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We study the q-state Potts model with nearest-neighbor coupling v= eβJ −1 in the
limit q, v→0 with the ratiow=v/q held fixed. Combinatorially, this limit gives rise
to the generating polynomial of spanning forests; physically, it provides informa-
tion about the Potts-model phase diagram in the neighborhood of (q, v)= (0,0).
We have studied this model on the square and triangular lattices, using a transfer-
matrix approach at both real and complex values of w. For both lattices, we have
computed the symbolic transfer matrices for cylindrical strips of widths 2�L�10,
as well as the limiting curves B of partition-function zeros in the complex w-plane.
For realw, we find two distinct phases separated by a transition pointw=w0, where
w0 =−1/4 (resp.w0 =−0.1753±0.0002) for the square (resp. triangular) lattice. For
w>w0 we find a non-critical disordered phase that is compatible with the predicted
asymptotic freedom as w→ +∞. For w<w0 our results are compatible with a
massless Berker–Kadanoff phase with central charge c= −2 and leading thermal
scaling dimension xT,1 = 2 (marginally irrelevant operator). At w=w0 we find a
“first-order critical point”: the first derivative of the free energy is discontinuous at
w0, while the correlation length diverges as w↓w0 (and is infinite at w=w0). The
critical behavior atw=w0 seems to be the same for both lattices and it differs from
that of the Berker–Kadanoff phase: our results suggest that the central charge is
c=−1, the leading thermal scaling dimension is xT,1 =0, and the critical exponents
are ν=1/d=1/2 and α=1.
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1. INTRODUCTION

1.1. Phase Diagram of the Potts Model

The Potts model(1–3) on a regular lattice L is characterized by two
parameters: the number q of Potts spin states, and the nearest-neighbor
coupling v= eβJ −1.4 Initially q is a positive integer and v is a real num-
ber in the interval [−1,+∞), but the Fortuin–Kasteleyn representation
(reviewed in Section 2.1) shows that the partition function ZG(q, v) of the
q-state Potts model on any finite graph G is in fact a polynomial in q and
v. This allows us to interpret q and v as taking arbitrary real or even com-
plex values, and to study the phase diagram of the Potts model in the real
(q, v)-plane or in complex (q, v)-space.

According to the Yang–Lee picture of phase transitions,(4) informa-
tion about the possible loci of phase transitions can be obtained by inves-
tigating the zeros of the partition function for finite subsets of the lattice L
when one or more physical parameters (e.g. temperature or magnetic field)
are allowed to take complex values; the accumulation points of these zeros
in the infinite-volume limit constitute the phase boundaries. For the Potts
model, therefore, by studying the zeros of ZG(q, v) in complex (q, v)-space
for larger and larger pieces of the lattice L, we can learn about the phase
diagram of the Potts model in the real (q, v)-plane and more generally in
complex (q, v)-space.

Since the problem of computing the phase diagram in complex (q, v)-
space is difficult, it has proven convenient to study first certain “slices”
through (q, v)-space, in which one parameter is fixed (usually at a real
value) while the remaining parameter is allowed to vary in the complex
plane. Thus, the authors and others (notably Shrock and collaborators)
have in previous work studied the chromatic polynomial (v= −1), which
corresponds to the zero-temperature limit of the Potts antiferromagnet;5

the flow polynomial (v = −q), which is dual to the chromatic polyno-
mial;(8) the q-plane behavior for fixed real v in both the ferromagnetic and
antiferromagnetic regions;(9–15) and the v-plane behavior for fixed real q,
notably either q=2,3,4, . . . ,(9–22) q→1(14,15) or q=0.(14,15,23)

4Here we are considering only the isotropic model, in which each nearest-neighbor edge is
assigned the same coupling v. In a more refined analysis, one could put (for example) differ-
ent couplings v1, v2 on the horizontal and vertical edges of the square lattice, different cou-
plings v1, v2, v3 on the three orientations of edges of the triangular or hexagonal lattice,
etc.

5See ref. 5 for an extensive list of references through December 2000; and see refs. 6, 7 for
more recent work.
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In this paper we will study yet another slice, namely the limit q, v→
0 with w = v/q finite.6 From a combinatorial point of view, this limit
corresponds to the generating polynomial of spanning forests (see Sec-
tion 2.2). From a physical point of view, this limit corresponds to inves-
tigating the behavior of the phase diagram in a small neighborhood of
the point (q, v)= (0,0)—more precisely, to investigating those phase-tran-
sition curves that pass through (q, v)= (0,0) with finite slope w.7 This
limit takes on additional interest in light of the recent discoveries(24) that
(a) it can be mapped onto a fermionic theory containing a Gaussian term
and a special four-fermion coupling, and (b) this latter theory is equiva-
lent, to all orders in perturbation theory in 1/w, to the N -vector model at
N=−1 with β=−w, and in particular is perturbatively asymptotically free
in two dimensions, analogously to two-dimensional σ -models and four-
dimensional nonabelian gauge theories.

Further motivation for this study comes from our ongoing work(25)

on the phase diagram and renormalization-group flows of the Potts model
on the square and triangular lattices. These phase diagrams have been
actively studied (see e.g. ref. 26 for an extensive set of references); but cer-
tain aspects of the phase diagram in the antiferromagnetic regime remain
unclear, notably on the triangular lattice. Let us begin, therefore, by giv-
ing a brief summary of what is known and what is mysterious. We shall
parametrize the interval 0�q�4 by

q = 4 cos2(π/δ) with 2� δ�∞ . (1.1)

6We stress that, despite the fact that v → 0, this is not an “infinite-temperature” limit in
any relevant physical sense, because v and q are simultaneously varying, and one must take
account of the joint effect of the two parameters. Indeed, it turns out that for q small it is
w= v/q, and not v itself, that plays the role of an “inverse temperature”. Thus, the radius
of convergence of the small-v expansion is asymptotically proportional to |q| when q→ 0;
that is why the small-w expansion in the spanning-forest model is convergent for small |w|
but not in general for all w (see Section 3.1 and Appendix A). In particular, phase transi-
tions can and do occur at finite values of real or complex w, as we shall see in this paper.

For the two-dimensional lattices considered here, it will turn out that there is no phase
transition for positive real w. But this expresses a deep fact about the critical behavior for
these lattices, namely the asymptotic freedom.(24) The situation is likely to be quite different
for three-dimensional lattices, for which there may well exist a “ferromagnetic” phase tran-
sition at some finite positive real wcrit.

7By a standard duality transformation [see (2.21)–(2.24) below], the spanning-forest model
on the lattice L at parameter w is equivalent to the q = 0 model on the dual lattice L∗ at
parameter v = 1/w. In particular, our results concerning the spanning-forest model on the
square and triangular lattices can be immediately translated into results for the q = 0 Potts
model at fixed v on the square and hexagonal lattices. We leave these straightforward trans-
lations to the reader.
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Square lattice: Baxter(27,28) has determined the exact free energy for
the square-lattice Potts model on two special curves in the (q, v)-plane:

v = ±√
q, (1.2)

v = −2±
√

4−q. (1.3)

These curves are plotted in Fig. 1. Curve (1.2+) is known(27) to corre-
spond to the ferromagnetic phase-transition point, whose critical behavior
is by now well understood:(29–32) for 0 � q � 4 the critical ferromagnet is
described by a conformal field theory (CFT)(30–32) with central charge

c = 1− 6
δ(δ−1)

(1.4)

Fig. 1. (Color online) Phase diagram for the square-lattice Potts model in the (q, v)-plane.
The solid curves show the ferromagnetic (v > 0) and antiferromagnetic (v < 0) phase-transi-
tion curves. The dots • (resp. circles ◦) indicate the known second-order (resp. first-order)
transition values vc(q) for integer q. The dashed and dot-dashed curves represent (1.2−)
and (1.3−), respectively. The hatched region corresponds to the conjectured Berker–Kadanoff
phase. The horizontal dashed line corresponds to infinite temperature (v = 0), and the hor-
izontal dotted line corresponds to the zero-temperature antiferromagnet (v= −1). The pink
vertical lines show the Beraha numbers q = 4 cos2(π/n) (n = 2,3, . . . ); at these values the
Berker–Kadanoff phase is not defined.
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and thermal scaling dimensions8,9

xT,n = n(nδ+2)
2(δ−1)

[n=1,2,3, . . . ] . (1.5)

Baxter(28) conjectured that curve (1.3+) with 0�q�4 corresponds to
the antiferromagnetic critical point. For q = 2 this gives the known exact
value;(37) for q = 3 it predicts a zero-temperature critical point (vc = −1),
in accordance with strong analytical and numerical evidence;(38–45) and for
q>3 it predicts that the putative critical point lies in the unphysical region
v<−1, so that the entire physical region −1�v�0 lies in the disordered
phase, in agreement with numerical evidence for q=4.(44)

Saleur(46,47) pursued the investigation of the phase diagram and criti-
cal behavior in the antiferromagnetic (−1�v�0) and unphysical (v<−1)
regimes. Firstly, he extended Baxter’s conjecture by suggesting(47) that the
critical antiferromagnetic Potts model (1.3+) with 0�q�4 is described by
a CFT with central charge

c = 2−6/δ . (1.6)

8For a scaling operator Oi , we denote by yi its renormalization-group eigenvalue, so that
yi > 0 (resp. = 0, < 0) corresponds to a relevant (resp. marginal, irrelevant) operator. Then
xi = d − yi is the corresponding scaling dimension, where d denotes the system’s spatial
dimension. When d = 2 (as in this paper), we can use the language of conformal field the-
ory (CFT): if a scaling operator Oi has conformal weight hi (resp. h̄i ) with respect to the
holomorphic (resp. antiholomorphic) variable, then xi =hi + h̄i is the scaling dimension and
si =hi − h̄i is the spin.

9See Ref. 33 (Appendix A.1) for a convenient summary of the critical properties of the two-
dimensional ferromagnetic Potts model. The parameter x used there is related to δ by x =
−2/δ. Note also that there is a typographical error in equation (A.10) of Ref. 33, which
should read �r,s = ([2(s− r)+ sx]2 −x2)/(8[(2+x)].

In CFT language, the n-th thermal scaling dimension xT,n is twice the conformal weight
of the operator φn+1,1 obtained by repeated fusion of the fundamental thermal operator
φ2,1. Please note that for integer δ � 4, the central charge (1.4) coincides with that of a
unitary minimal model, for which some zero coefficients appear in the usual Coulomb-gas
fusion rules. This means that the operator φn+1,1 will be present in the Kac table only for
n = 1,2, . . . , δ − 3. In particular, for q = 2 (resp. q = 3), the operator with exponent (1.5)
should be a local observable in terms of the Potts spin variables only for n= 1 (resp. n=
1,2,3). However, nothing would seem to prevent it from being observable in terms of the
Fortuin–Kasteleyn clusters (see Section 2.1 below), whose definition is nonlocal in terms of
the spins. Indeed, it is conceivable that the n = 2 operator is indeed present in the two-
dimensional Ising model and causes L−4/3 corrections to scaling in the Fortuin–Kasteleyn
bond observables.(34–36)
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Furthermore, Saleur conjectured that the leading thermal scaling dimen-
sion xT in this CFT is given by

xT = 4/δ , (1.7)

so that the associated critical exponent is

ν ≡ 1
2−xT = δ

2(δ−2)
. (1.8)

This conjecture agrees with the known value at q = 2 (namely, ν = 1);
on the other hand, it predicts the value ν = 3/4 at q = 3, which is
incorrect.(44,45) However, after discussing the representation of the 3-state
model as a free bosonic field with g= 1/3, Saleur finds another operator
with xT = 3/2 and ν = 2, which is the correct answer.(44,45) Clearly, this
latter operator (and not the initially predicted one) is the leading thermal
operator in the square-lattice 3-state Potts antiferromagnet.(45)10

It is not clear whether (1.7)/(1.8) should be expected to be correct for
q �= 3. We defer testing the validity of these expressions, as a function of
q, to a subsequent paper.(25) However, in the limit q→ 0 along the curve
(1.3+), we shall find that there are at least two thermal-type operators that
are more relevant than (1.7), namely one with xT = 0 and another with
xT ≈0.3–0.4 (see Sections 7.6 and 7.10 for more details).

Saleur(47) also investigated the meaning of the other two special
curves, (1.2−) and (1.3−). He suggested that there exists a Berker–Kada-
noff phase(48)—i.e. a massless low-temperature phase with algebraically
decaying correlation functions—extending between the curves (1.3±) in the

10In the Coulomb gas picture(29) employed by Saleur,(47) there are two basic types of opera-
tors: electric (or vertex) operators of electric charge e, and magnetic (or vortex) operators
of magnetic charge m. The thermal scaling field associated to a general operator with elec-
tric charge e∈Z/3 and magnetic charge m∈3Z is given by

xT = e2

2g
+ gm2

2
,

where g is the coupling constant of the free bosonic field onto which the original model
renormalizes. In the square-lattice 3-state Potts antiferromagnet, g=1/3.(47) Saleur initially
conjectured the thermal operator to be an electric operator of charge e=2/3, thus leading
to xT = 2/3 and ν= 3/4. The alternate conjecture (xT = 3/2 and ν= 2) comes from identi-
fying the thermal operator with a magnetic one with charge m= 3. This result agrees with
the identification (made in ref. 45) of the thermal operator as a vortex operator with the
smallest possible topological charge. (The normalization conventions in refs. 47 and 45 dif-
fer: in ref. 45, one has xT = 1

4π (α
2/K +Kβ2) with the correspondence α=πe, β= 2m and

K=πg/2.)
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range 0�q�4 (i.e. throughout the hatched region in Fig. 1) except when q
is a Beraha number Bn=4 cos2(π/n) [n=2,3,4, . . . , corresponding to the
pink vertical lines in Fig. 1], and that the critical behavior of this phase is
determined by an attractive fixed point lying on the unphysical self-dual
line (1.2−). He further conjectured that the model on the line (1.2−) with
0�q�4—and hence throughout the Berker–Kadanoff phase—is described
by a CFT with central charge

c = 1− 6(δ−1)2

δ
, (1.9)

provided that δ is not an integer. Finally, he conjectured that the leading
thermal scaling dimension in this CFT is

xT = 3δ−2
2

. (1.10)

Since xT � 2, the energy is an irrelevant operator in this phase (except at
q = 0, where it is marginal), in accordance with the fact that there is an
entire interval of critical points, all governed by a single renormalization-
group fixed point.11

Finally, (1.3−) is the dual of the antiferromagnetic critical curve
(1.3+). Therefore, the transfer matrices for (1.3±) with cylindrical bound-
ary conditions are identical up to multiplication by a constant. If we
assume (as seems likely) that the different endgraphs needed in the two
cases do not lead to any zero amplitudes, the theories (1.3±) should there-
fore be completely equivalent; in particular, they should have the same
central charge and the same thermal scaling dimensions. (However, a local
operator in one theory could correspond to a nonlocal operator in the
dual theory.) This equivalence is corroborated by the fact that in CFT,
the complete operator content is linked to the modular-invariant partition
function on the torus;(31) obviously, in this geometry the lattice coincides
with its dual.

11It is worth noticing(47) that there is a unified way of looking at the ferromagnetic and
Berker–Kadanoff phases as continuations of one another. Let us parametrize (1.2±) by q=
4 cos2(πu/2) and v = 2 cos(πu/2), with 0 � u� 1 for the ferromagnetic critical curve and
1�u�2 for the Berker–Kadanoff curve. (We thus have u=2/δ for the ferromagnetic phase,
and u= 2 − 2/δ for the Berker–Kadanoff phase.) Then we can write the central charge as
c= 1 − 3u2/(2 −u), and the thermal scaling dimensions read xT,n=n(n+u)/(2 −u). More-
over, continuing these formulae to −1 �u� 0 gives the central charge and thermal scaling
dimensions for the tricritical Potts model. (This variable u corresponds to the negative of
the variable x employed in ref. 33 [Appendix A.1].)
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Let us tentatively accept these conjectures and determine their impli-
cations for the limit q, v → 0 with w = v/q fixed. The self-dual curves
(1.2±) pass through (q, v)= (0,0) with slope w=±∞, while the antiferro-
magnetic critical curve (1.3+) passes through (q, v)= (0,0) with slope w=
−1/4. Thus, all values −1/4<w<+∞ are predicted to lie in the high-tem-
perature phase and hence be noncritical, while all values −∞<w<−1/4
are predicted to lie in the Berker–Kadanoff phase and hence be critical
with central charge c= −2 and leading thermal scaling dimension xT = 2
(corresponding to a marginally irrelevant operator) as given by (1.9)/(1.10)
with δ=2. The transition between these two behaviors occurs at

w = w0(sq) = −1/4 , (1.11)

where we expect a critical theory with central charge c= −1 as given by
(1.6) with δ=2. If (1.7)/(1.8) is correct, we should expect the thermal oper-
ator at w=−1/4 to be marginal: xT =2 and hence ν=∞. But as we shall
see (Sections 7.6 and 7.10), the prediction (1.7)/(1.8) is wrong, and a more
likely scenario is xT = 0, so that ν= 1/2. Finally, w=+∞ is a ferromag-
netic critical point with central charge c= −2 and leading thermal scal-
ing dimension xT =2 (corresponding to a marginally relevant operator), as
given by (1.4)/(1.5) with δ=2. In a separate paper(24) we have shown that
the w= +∞ theory can be represented in terms of a pair of free scalar
fermions, while the theory at finite w can be mapped onto a fermion-
ic theory that contains a Gaussian term and a special four-fermion cou-
pling; furthermore, this latter theory is perturbatively asymptotically free
and is in fact equivalent, to all orders in perturbation theory in 1/w, to
the N -vector model at N =−1 with β=−w.

Triangular lattice: Baxter and collaborators(49–51) have determined the
exact free energy for the triangular-lattice Potts model on two special
curves in the (q, v)-plane:

v3 +3v2 −q = 0, (1.12)

v = −1. (1.13)

These curves are plotted in Fig. 2. The uppermost branch (v � 0) of
curve (1.12) is known to correspond to the ferromagnetic phase-transition
point, whose critical behavior is identical (thanks to universality) to that
of the square-lattice ferromagnet.(29–32) The significance of the other two
branches of (1.12) is not clear. The curve (1.13) is not critical in general,
but it does contain the zero-temperature critical points at q = 2(52) and
q=4(53) (see ref. 7 for further discussion and references). The existence of
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Fig. 2. (Color online) Phase diagram for the triangular-lattice Potts model in the (q, v)-
plane. The upper solid curve shows the ferromagnetic (v > 0) phase-transition curve. The
dots • (resp. circles ◦) indicate the known second-order (resp. first-order) transition values
vc(q) for integer q. The lower solid curve shows the hypothesized new phase-transition curve
for small positive q, as estimated numerically in this paper (see Section 7.7). The dashed
and dot-dashed curves represent the middle and lower branches of (1.12), respectively. The
hatched region corresponds to (a portion of) the conjectured Berker–Kadanoff phase. The
horizontal dashed line corresponds to infinite temperature (v= 0), and the horizontal dotted
line corresponds to the zero-temperature antiferromagnet (v=−1).

an antiferromagnetic critical curve for the triangular-lattice Potts model is
at present not established; a fortiori its location, if it exists, is unknown.

Consideration of the renormalization-group flow for the triangular-
lattice Potts model has led the present authors to hypothesize(25) that there
exists an additional curve of RG fixed points—repulsive in the tempera-
ture direction—emanating from the point (q, v)= (0,0) and extending into
the antiferromagnetic region v<0 as q grows. In a subsequent paper(25) we
shall present numerical estimates of the location and properties (e.g. crit-
ical vs. first-order) of this new phase-transition curve and discuss how it
combines with the known antiferromagnetic critical points at q=2,4 with
v=−1, and with the first-order phase transition at q= 3, v≈−0.79692 ±
0.00003,(15,54) to form a consistent phase diagram. One interesting issue
is whether this curve (or part of it) might constitute a locus of critical
points, in analogy with the case of the square lattice. For the time being
we limit ourselves to the conjecture, in analogy with the square-lattice
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phase diagram, that the region lying in the range 0 � q � 4 between the
new phase-transition curve and the lower branch of curve (1.12) will con-
stitute a Berker–Kadanoff phase whose critical behavior is determined by
an attractive fixed point lying on the middle branch of curve (1.12).

Note that Saleur (ref. 46, p. 669) expects universality both for the
Berker–Kadanoff phase and for the critical theories forming its upper and
lower boundaries. This would suggest, in particular, that the central charge
in the Berker–Kadanoff phase of the triangular-lattice model might also
be given by (1.9), and that the thermal scaling dimension might be given
by (1.10). We have numerical evidence of the former result, which will be
published elsewhere.(25) Moreover, if Saleur’s conjecture is true, one would
expect the lower branch of curve (1.12) to be governed by the same critical
continuum theory as the curve (1.3±) of the square-lattice Potts model.

Let us denote by w0(tri) the slope at q = 0 of the new phase-transi-
tion curve. Then, if we consider the limit q, v→0 with w=v/q fixed, we
find two different regimes: all values w0(tri)<w<+∞ are predicted to lie
in the high-temperature phase and hence be noncritical, while all values
−∞<w<w0(tri) are predicted to lie in the Berker–Kadanoff phase and
hence be critical with central charge c= −2 as given by (1.9) with δ= 2.
The transition between these behaviors occurs at w=w0(tri), which may
possibly constitute a critical theory of unknown type.

Let us observe, finally, that the analytical results of ref. 24 show that
the conjectured universality of the Berker–Kadanoff phase does hold at
least in the limit q, v→ 0 with w= v/q fixed. Indeed, for all two-dimen-
sional lattices, the Berker–Kadanoff phase at −∞<w<w0 is simply the
c= −2 theory of a pair of free scalar fermions, perturbed by a four-fer-
mion operator that is (in this phase) marginally irrelevant.

Remark. It should be stressed that the Potts spin model has a prob-
abilistic interpretation (i.e., has nonnegative weights) only when q is a
positive integer and v � −1. Likewise, the Fortuin–Kasteleyn random-
cluster model [cf. (2.4) below], which reformulates the Potts model and
extends it to noninteger q, has a probabilistic interpretation only when
q � 0 and v � 0 (or in the limit considered here, w � 0). In all other
cases, the model belongs to the “unphysical” regime (i.e., the weights can
be negative or complex), and the ordinary statistical–mechanical proper-
ties need not hold. For instance, the free energy need not possess the
usual convexity properties; the leading eigenvalue of the transfer matrix
need not be simple; and phase transitions can occur even in one-dimen-
sional systems with short-range interactions.12 Nevertheless, there is a long

12For a recent pedagogical discussion of the conditions under which one-dimensional systems
with short-range interactions can or cannot have a phase transition, see ref. 55.
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history of studying statistical–mechanical models in “unphysical” regimes:
examples include the hard-core lattice gas at its negative-fugacity critical
point;(56–66) the closely related(56,57,62,63) problem of the Yang–Lee edge
singularity;(4,67–73) and the low-temperature N -vector model at N<1, with
application to dense polymers.(74–85) Indeed, the previously cited papers
of Baxter(28,50,51) and Saleur(46,47) deal in part with “unphysical” regimes
in the Potts model. And though one must be especially careful in such
studies, it generally turns out that the “unphysical” regime can be under-
stood using the standard tools of statistical mechanics, appropriately mod-
ified. In particular, conformal field theory (CFT) seems to apply also in
the “unphysical” regime, although there is (as yet) no rigorous under-
standing of why this should be the case: well-studied examples include the
Yang–Lee edge singularity(72,73) and dense polymers.(82–84) Note that the
“unphysical” nature of these models means that the corresponding CFT
is non-unitary.

Some aspects of the studies made in the present paper of the regime
w < 0 in the spanning-forest model—notably, Sections 7.5, 7.6, 7.9 and
7.10—must therefore be understood as relying implicitly on such a con-
jectured extension of conformal field theory, analogously to the just-cited
studies. On the other hand, the internal consistency of our results provides
additional evidence for the validity of such an extension.

1.2. Outline of this Paper

The purpose of this paper is to shed light on these phase diagrams in
the neighborhood of (q, v)= (0,0) by studying the q=0 Potts-model par-
tition function in the complex w-plane for lattice strips of width m and
length n, using a transfer-matrix method. For fixed width m and arbitrary
length n, this partition function can be expressed via a transfer matrix of
fixed size M×M (which unfortunately grows rapidly with the strip width
m):

Zm×n(w) = tr[A(w)T (w)n−1] (1.14a)

=
M∑

k=1

αk(w)λk(w)
n−1 . (1.14b)

Here the transfer matrix T (w) and the boundary-condition matrix A(w)

are polynomials in w, so that the eigenvalues {λk} of T and the amplitudes
{αk} are algebraic functions of w. We can of course use T (w) and A(w)

to compute the zeros of the partition function for any finite strip m× n;
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but more importantly, we can compute the accumulation points of these
zeros in the limit n→∞, i.e. for the case of an semi-infinite strip.(5–7,86–89)

According to the Beraha–Kahane–Weiss theorem,(90–92) the accumulation
points of zeros when n→∞ can either be isolated limiting points (when
the amplitude associated to the dominant eigenvalue vanishes, or when all
eigenvalues vanish simultaneously) or belong to a limiting curve B (when
two dominant eigenvalues cross in modulus). As the strip width m tends
to infinity, the curve B=Bm is expected to tend to a thermodynamic-limit
curve B∞, which we interpret as a phase boundary in the complex w-
plane. In particular, B∞ is expected to cross the real axis precisely at the
physical phase-transition point w0.

Our approach is, therefore, to compute the curves Bm up to as large a
value of m as our computer is able to handle, and then extrapolate these
curves to m=∞. One output of our study is a numerical estimate of w0.
For the square lattice, we find

w0(sq) = −0.2501±0.0002 (1.15)

in excellent agreement with the prediction w0(sq)= −1/4. We are there-
fore justified in assuming, in our subsequent analysis, that w0(sq)=−1/4
exactly. For the triangular lattice, we find

w0(tri) = −0.1753±0.0002 . (1.16)

We do not yet know whether the exact value of w0(tri) is given by any
simple closed-form expression. Nor do we know whether there exists a
simple exact formula for the location of the critical curve B∞ in the com-
plex w-plane, for either the square or triangular lattice.

In order to shed further light on the phase diagram of the square-
and triangular-lattice systems, we have studied the free energy (and its
derivatives with respect to w), the central charge c and the thermal scal-
ing dimension xT as a function of w on the real w-axis. We find that at
w=w0 there is a first-order phase transition: the free energy has a discon-
tinuous first derivative with respect to w at w=w0. From our numerical
work it is not clear whether the discontinuity in this first derivative is finite
or infinite: the analysis seems to favor a finite limit, but a weak divergence
such as f ′(w)∼ log(w−w0) or f ′(w)∼ log log(w−w0) is also possible. The
two phases are characterized as follows:

• w<w0: In this case the system is critical and it can be described
by a conformal field theory with central charge c=−2. The leading ther-
mal scaling exponent is xT =2, so that the energy is a marginal operator.
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Both results agree with Saleur’s prediction (1.9)/(1.10) for the Berker–
Kadanoff phase.

• w>w0: In this case the system is non-critical, i.e., the correlation
length is finite.

The behavior at w =w0 is rather special. On the one hand, it is a
coexistence point of two different phases; on the other hand, it is itself a
critical point, which belongs to a different universality class from that of
the Berker–Kadanoff phase, namely the one corresponding to the q → 0
limit along the antiferromagnetic critical curve (1.3+). Thus, at least for
the square lattice, we expect that this point will be described by a con-
formal field theory of central charge c= −1 in accordance with Saleur’s
prediction (1.6).

Our numerical conclusions concerning the behavior at w = w0 are
drawn principally from the results on the square lattice (as in this case
we know the exact location of w0), but we expect them to hold also for
the triangular lattice. On the square lattice we have clear evidence that
w0(sq)= −1/4 is indeed critical, and we can give rough estimates of the
central charge and thermal scaling dimensions:

(1) Extrapolation of small-w expansions using differential approxi-
mants (Appendix A) shows that the second derivative of the free energy
diverges for w ↓w0 as (w−w0)

≈−0.91±0.02. This exponent is close to the
theoretical prediction α= 1 for a first-order critical point (see below), i.e.
f ′′(w)∼ (w − w0)

−1, and is consistent with it if one does not take the
alleged error bar too seriously (the error estimates in series extrapolation
have no strong theoretical basis). We have checked (Section 7.4) that our
data from finite-width strips are consistent with this latter behavior, possi-
bly modified by a multiplicative logarithmic correction.

(2) The central charge at w=w0 is different from both the Berker–
Kadanoff value (c=−2) and the noncritical value (c= 0). Indeed, we get
estimates around c≈−1.3, which seem to be tending roughly towards c=
−1 as the strip width grows (Section 7.5).

(3) The correlation length at w = w0 is infinite for all even strip
widths, reflecting the fact that w=w0 is an exact endpoint of the limit-
ing curve B for even widths. For odd strip widths, the correlation length
at w=w0 is finite and seems to be tending to infinity as the strip width
tends to infinity (Section 7.6).

(4) Because the correlation length at w =w0 is infinite for all even
strip widths, we conclude from standard CFT arguments(93) that the
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leading thermal scaling dimension xT,1 equals 0, and hence that ν = 1/2
(Section 7.6). The scaling law dν=2−α then yields the specific-heat expo-
nent α=1, in agreement with the results from small-w expansions.

(5) The second thermal scaling dimension xT,2 can be obtained from
the second gap for even widths (Section 7.6). We obtain a value xT,2 ∼<0.47
that is clearly different from the Berker–Kadanoff value xT,1 =2. This result
is close to the one obtained from the first gap for odd widths: xT,2 ∼<0.37.

In conclusion, the phase transition at w=w0 is rather unusual. The
point w=w0 is what Fisher and Berker (ref. 94, pp. 2510–2511) have called
a first-order critical point: namely, it is both a first-order transition point (the
first derivative of the free energy is discontinuous at w=w0) and critical (the
correlation length is infinite for w�w0 and diverges as w↓w0). The critical
exponents take the values α=1 and ν=1/d, in agreement both with finite-
size-scaling theory for first-order transitions (ν=1/d and α/ν=d)(94,95) and
with the hyperscaling law dν=2−α for critical points.13

This sort of phase transition seems to be rare; indeed, we are aware
of only two other equilibrium-model examples:

(1) One-dimensional q-state clock model with a θ -term.(96–99) In this
model, the first derivative of the free energy has a finite discontinuity at the
transition points, and the correlation length diverges there with exponent
ν = 1/d = 1. However, the specific heat does not diverge at the transition
points: it is a discontinuous but bounded function of the temperature (see
ref. 99 for a computation of the specific heat in the limit q→∞). This behav-
ior does not contradict the Fisher–Berker scaling theory for first-order crit-
ical points:(94, p. 2511) “first-order critical points are no more than ordinary
critical points in which either one or both of the relevant eigenvalue expo-
nents attains its thermodynamically allowed limiting value λ=d”. Unfortu-
nately the magnetic exponent was not considered in ref. 99.

(2) Six-vertex model (which contains the KDP model of a ferroelec-
tric(100,101) as a special case).14 We follow the notations of Baxter’s book
(ref. 27, Sections 8.10 and 8.11). The transition between any of the two
ferroelectrically ordered phases (regimes I and II in Baxter’s notation) and
the critical phase (regime III) is characterized by the following properties:

(a) The first derivative of the free energy with respect to the temper-
ature, f ′

6V , has a finite jump discontinuity on the transition line.

13Please note that any two of the four equations α=1, ν=1/d, α/ν=d and dν=2−α imply
the other two.

14We are grateful to an anonymous referee for bringing this model to our attention.
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(b) The second derivative of the free energy with respect to the tem-
perature, f ′′

6V , is identically zero in the ferroelectrically ordered phases and
diverges like (T −Tc)−1/2 as we approach the transition line from the crit-
ical phase.

(c) The correlation length is infinite in the critical phase (i.e., the cor-
relations decay algebraically to zero) and identically zero in the ferroelec-
trically ordered phases.

(d) The electric polarization is identically zero in the critical phase
and identically 1 in the ferroelectrically ordered phases.

Because of (a) and (b), it is unclear whether we should say α= 1 or α=
1/2. And because of (c), the critical exponent ν cannot be sensibly defined.
Taken together, the properties (a)–(d) are rather unusual.

It would be interesting to know of other examples of first-order crit-
ical points.15

The plan of this paper is as follows: In Section 2 we review the needed
background concerning the Potts-model partition function and the combi-
natorial polynomials that can be obtained from it. In Section 3 we review the
small-w and large-w expansions for the q→0 Potts model. In Section 4 we
summarize how we computed the transfer matrices. In Sections 5 and 6 we
report our results for square-lattice and triangular-lattice strips, respectively.
In Section 7 we analyze the data to extract estimates of the critical point
w0, the free energy f (w), the central charge c(w), and the thermal scaling
dimensions xT,i(w) for each of the two lattices. Finally, in Section 8 we dis-
cuss some open questions. In the Appendix we discuss how we performed
the analysis of the small-w series expansions obtained in Section 3.

2. BASIC SET-UP

We begin by reviewing the Fortuin–Kasteleyn representation of the
q-state Potts model (Section 2.1). Then we discuss the various polynomials

15The one-dimensional Ising ferromagnet with 1/r2 long-range interaction, cited by Fisher
and Berker (ref. 94, p. 2510) as an example of this phenomenon, does not, strictly speak-
ing, qualify, as the (exponential) correlation length is +∞ for all β>0 (by Griffiths’ second
inequality, 〈σxσy〉 � tanh Jxy ≈β/|x− y|2), so that a critical exponent ν cannot be defined.
Müller(102) studied a one-dimensional model of U(N)- or SU(N)-valued spins with a com-
plex nearest-neighbor interaction, generalizing the work on the q-state clock model with
a θ -term. He showed that for U(N), the model undergoes a sequence of first-order phase
transitions; however, it is not clear to us whether the correlation length diverges at those
transition points. Finally, Oliveira and coworkers(103,104) have found that some non-equilib-
rium models exhibit a first-order critical point with ν=1/d.
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that can be obtained from the q-state Potts model by taking the limit q→
0 (Section 2.2). After this, we define the specific quantities that we will be
studying in our work on spanning forests on the square and triangular lat-
tices, and review the basic principles of finite-size scaling in conformal field
theory (Section 2.3). Finally, we review briefly the Beraha–Kahane–Weiss
theorem (Section 2.4).

2.1. Fortuin–Kasteleyn Representation

Let G=(V ,E) be a finite undirected graph with vertex set V and edge
set E; let {Je}e∈E be a set of couplings; and let q be a positive integer. At
each site i ∈V we place a spin σi ∈{1,2, . . . , q}, and we write σ ={σi}i∈V
to denote the spin configuration. The Hamiltonian of the q-state Potts
model on G is

H(σ ) = −
∑

e=ij∈E
Jeδ(σi, σj ) , (2.1)

where δ denotes the Kronecker delta. The partition function Z =∑
σ e

−βH(σ ) can be written in the form

ZG(q, v) =
∑

σ

∏

e=ij∈E

[
1+veδ(σi, σj )

]
, (2.2)

where

ve = eβJe −1 (2.3)

and v={ve}e∈E . A coupling Je (or ve) is called ferromagnetic if Je�0 (ve�
0), antiferromagnetic if −∞ � Je � 0 (−1 � ve � 0), and unphysical if ve /∈
[−1,∞).

At this point q is still a positive integer. However, we now assert that
ZG(q, v) is in fact the evaluation at q ∈Z+ of a polynomial in q and {ve}
(with coefficients that are indeed either 0 or 1). To see this, we proceed
as follows: In (2.2), expand out the product over e∈E, and let A⊆E be
the set of edges for which the term veδ(σi, σj ) is taken. Now perform the
sum over configurations σ : in each connected component of the subgraph
(V ,A) the spin value σi must be constant, and there are no other con-
straints. Therefore

ZG(q, v) =
∑

A⊆E
qk(A)

∏

e∈A
ve , (2.4)
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where k(A) is the number of connected components (including isolated
vertices) in the subgraph (V ,A). The subgraph expansion (2.4) was discov-
ered by Birkhoff(105) and Whitney(106) for the special case ve=−1 (see also
Tutte(107,108)); in its general form it is due to Fortuin and Kasteleyn(109,110)

(see also ref. 111). Henceforth we take (2.4) as the definition of ZG(q, v)
for arbitrary complex q and v. When ve takes the same value v for all
edges e, we write ZG(q, v) for the corresponding two-variable polynomial.

Let us observe, for future reference, that (2.4) can alternatively be
rewritten as

ZG(q, v) = q |V | ∑

A⊆E
qc(A)

∏

e∈A

ve

q
, (2.5)

where we use the notation |S| to denote the number of elements of a finite
set S, and

c(A) = |A|+k(A)−|V | (2.6)

is the cyclomatic number of the subgraph (V ,A), i.e. the number of line-
arly independent circuits in (V ,A).

Remark. In the mathematical literature, these formulae are usually
written in terms of the Tutte polynomial TG defined by(112)

TG(x, y) =
∑

A⊆E
(x−1)k(A)−k(G)(y−1)c(A), (2.7)

where k(G)=k(E) is the number of connected components in G, and c(A)
is the cyclomatic number defined in (2.6). Comparison with (2.4) shows
that

TG(x, y) = (x−1)−k(G) (y−1)−|V |ZG
(
(x−1)(y−1), y−1

)
. (2.8)

In other words, the Tutte polynomial TG(x, y) and the Potts-model parti-
tion function ZG(q, v) are essentially equivalent under the change of vari-
ables

x = 1+q/v, (2.9a)

y = 1+v, (2.9b)

q = (x−1)(y−1), (2.9c)

v = y−1. (2.9d)
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The advantage of the Tutte notation is that it allows a slightly smoother
treatment of the q→0 limit (see Remark 1 at the end of the next subsec-
tion). The disadvantage is that the use of the variables x and y conceals
the fact that the particular combinations q and v play very different roles:
q is a global variable, while v can be given separate values ve on each
edge. This latter freedom is extremely important in many contexts (e.g.
in using the series and parallel reduction formulae). We therefore strongly
advocate the multivariable approach in which ZG(q, v) is considered the
fundamental quantity, even if one is ultimately interested in a particular
two-variable or one-variable specialization.

2.2. q →0 Limits

Let us now consider the different ways in which a meaningful q→ 0
limit can be taken in the q-state Potts model.

The simplest limit is to take q→0 with fixed couplings v. From (2.4)
we see that this selects out the subgraphs A⊆E having the smallest pos-
sible number of connected components; the minimum achievable value is
of course k(G) itself (=1 in case G is connected). We therefore have

lim
q→0

q−k(G)ZG(q, v) = CG(v) , (2.10)

where

CG(v) =
∑

A⊆E
k(A)=k(G)

∏

e∈A
ve (2.11)

is the generating polynomial of “maximally connected spanning sub-
graphs” (= connected spanning subgraphs in case G is connected).16

A different limit can be obtained by taking q→ 0 with fixed values
of w = v/q. From (2.5) we see that this selects out the subgraphs A⊆E

having the smallest possible cyclomatic number; the minimum achievable
value is of course 0. We therefore have(113,114)

lim
q→0

q−|V |ZG(q, qw) = FG(w) , (2.12)

16A subgraph is called spanning if its vertex set is the entire set V of vertices of G (as
opposed to some proper subset of V ). All of the subgraphs arising in this paper are span-
ning subgraphs, since we consider subsets A of edges only, and retain all the vertices.
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where

FG(w) =
∑

A⊆E
c(A)=0

∏

e∈A
we (2.13)

is the generating polynomial of spanning forests, i.e. spanning subgraphs
not containing any circuits.

Finally, suppose that in CG(v) we replace each edge weight ve by λve
and then take λ→ 0. This obviously selects out, from among the maxi-
mally connected spanning subgraphs, those having the fewest edges: these
are precisely the maximal spanning forests (= spanning trees in case G is
connected), and they all have exactly |V |−k(G) edges. Hence

lim
λ→0

λk(G)−|V |CG(λv) = TG(v) , (2.14)

where

TG(v) =
∑

A⊆E
k(A)=k(G)
c(A)=0

∏

e∈A
ve (2.15)

is the generating polynomial of maximal spanning forests (= spanning
trees in case G is connected).17 Alternatively, suppose that in FG(w) we
replace each edge weight we by λwe and then take λ→ ∞. This obvi-
ously selects out, from among the spanning forests, those having the great-
est number of edges: these are once again the maximal spanning forests.
Hence

lim
λ→∞

λk(G)−|V |FG(λw) = TG(w) . (2.16)

In summary, we have the following scheme for the q→0 limits of the
Potts model:

17We trust that there will be no confusion between the generating polynomial TG(v) and the
Tutte polynomial TG(x, y). We have used here the letter T because in the most important
applications the graph G is connected, so that TG(v) is the generating polynomial of span-
ning trees.



1172 Jacobsen et al.

CG(v)

q→0, v fixed v infinitesimal

ZG(q, v) TG(v or w)

q→0, w = v/q fixed w infinite

FG(w)

(2.17)

Finally, maximal spanning forests (= spanning trees in case G is con-
nected) can also be obtained directly from ZG(q, v) by a one-step pro-
cess in which the limit q → 0 is taken at fixed x = v/qα, where 0< α <
1.(110,113–115) Indeed, simple manipulation of (2.4) and (2.6) yields

ZG(q, q
αx) = qα|V | ∑

A⊆E
qαc(A)+(1−α)k(A)∏

e∈A
xe . (2.18)

The quantity αc(A)+ (1−α)k(A) is minimized on (and only on) maximal
spanning forests, where it takes the value (1−α)k(G). Hence

lim
q→0

q−α|V |−(1−α)k(G)ZG(q, qαx) = TG(x) . (2.19)

Remarks. 1. Let us rewrite the formulae of this subsection in terms
of the Tutte polynomial TG(x, y) [cf. (2.7)–(2.9)]. The limit q, v→ 0 with
w=v/q fixed corresponds to x=1+1/w, y=1; simple algebra using (2.8)
and (2.12) gives

TG(1+1/w,1) = wk(G)−|V |FG(w) . (2.20)

In particular, several of the evaluations of TG(1 + 1/w,1) have interesting
combinatorial interpretations:

• TG(1,1) (i.e., w=∞) counts the number of maximal spanning for-
ests in G (= spanning trees if G is connected).

• TG(2,1) (i.e., w=1) counts the number of spanning forests in G.
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• TG(1 + 1/k,1) (i.e., w = k) for k = 1,2,3, . . . is, up to a prefac-
tor, the number of possible “score vectors” in a tournament of constant-
sum games with scores lying in the set {0,1, . . . , k} (ref. 116, Propositions
6.3.19 and 6.3.25).

• TG(0,1) (i.e., w = −1): If G is a directed graph having a fixed
ordering on its edges, |TG(0,1)| counts the number of totally cyclic reori-
entations τ of G such that in each cycle of τ the lowest edge is not reori-
ented. For a planar graph with no isthmuses, |TG(0,1)| counts the num-
ber of totally cyclic orientations in which there is no clockwise cycle. See
ref. 116 (Examples 6.3.30 and 6.3.31).

We emphasize, however, that from a physical point of view there is noth-
ing special about the particular values w=∞,1,2,3, . . . ,−1. Rather, it is
important to study FG(w) as a function of the real or complex variable w.
The “special” values of w are those lying on the phase boundary B; they
are determined only a posteriori.

2. The polynomial FG(w) also equals the Ehrhart polynomial of a
particular unimodular zonotope determined by the graph G: see ref. 117
(Section XI.A) for details.

3. Suppose that G= (V ,E) is a connected planar graph; then we can
define a dual graph G∗ = (V ∗,E∗) by the usual geometric construction.18

Moreover, there is a one-to-one correspondence between the edges of G
and their corresponding dual edges in G∗; we can therefore identify E∗
with E, and assign the same weights v = {ve}e∈E to the edges of G and
G∗. We then have the fundamental duality relation(2)

ZG∗(q, v) = q1−|V |
(
∏

e∈E
ve

)

ZG(q, q/v) (2.21)

[where q/v of course denotes the vector {q/ve}e∈E ]. In particular, we have

18More precisely, consider a particular plane representation of G, and define G∗ by placing
one vertex in each face of G and then drawing an edge of G∗ through each edge of G.
The dual graph G∗ is not necessarily unique; nonisomorphic plane representations of G
(which can arise if G is not 3-connected) can give rise to nonisomorphic duals (see e.g. ref.
118 (p. 114) for an example). In any case, each of the dual graphs G∗ satisfies the relations
(2.21)–(2.24) below.
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CG∗(v) =
(
∏

e∈E
ve

)

FG(1/v), (2.22)

FG∗(w) =
(
∏

e∈E
we

)

CG(1/w), (2.23)

TG∗(v) =
(
∏

e∈E
ve

)

TG(1/v). (2.24)

4. Suppose that G is connected; and let us consider G as a communi-
cations network with unreliable communication channels, in which edge e
is operational with probability pe and failed with probability 1−pe, inde-
pendently for each edge. Let RG(p) be the probability that every node is
capable of communicating with every other node (this is the so-called all-
terminal reliability). Clearly we have

RG(p)=
∑

A⊆E
(V,A) connected

∏

e∈A
pe

∏

e∈E\A
(1−pe) , (2.25)

where the sum runs over all connected spanning subgraphs of G. The
polynomial RG(p) is called the (multivariate) reliability polynomial(119) for
the graph G. Modulo trivial prefactors, it is equivalent to CG(v) under the
change of variables

ve = pe

1−pe , (2.26a)

pe = ve

1+ve . (2.26b)

The reliability polynomial is therefore one of the objects obtainable as
a q→0 limit of the Potts model.

5. Brown and Colbourn,(120) followed by Wagner(121) and Sokal,(122)

have studied the possibility that the complex roots of the reliability poly-
nomial might satisfy a theorem of Lee–Yang type. To state what is at issue,
let us say that a graph G has

• the univariate Brown–Colbourn property if CG(v) �=0 whenever |1+
v|<1;

• the multivariate Brown–Colbourn property if CG(v) �= 0 whenever
|1+ve|<1 for all edges e;
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• the univariate dual Brown–Colbourn property if FG(w) �=0 whenever
Rew<−1/2;

• the multivariate dual Brown–Colbourn property if FG(w) �= 0 when-
ever Rewe <−1/2 for all edges e.

Here the word “dual” refers to the fact that a planar graph G has the
(univariate or multivariate) Brown–Colbourn property if and only if its
dual graph G∗ (which is also planar) has the (univariate or multivariate)
dual Brown–Colbourn property: this is an immediate consequence of the
identities (2.22)/(2.23).

Brown and Colbourn,(120) having studied the univariate reliability
polynomial RG(p) in a number of examples, conjectured that every loop-
less graph has the univariate Brown–Colbourn property.19 (Of course, they
didn’t call it that!) Subsequently, Sokal(122) made the stronger conjecture
that every loopless graph has the multivariate Brown–Colbourn property.
Moreover, Sokal(122) proved this latter conjecture for the special case of
series-parallel graphs (which are a subset of planar graphs).20 And since
the class of series-parallel graphs is self-dual, it follows immediately that
every bridgeless series-parallel graph has the multivariate dual Brown–
Colbourn property.21 Finally, Sokal’s conjecture would imply that every
bridgeless planar graph (series-parallel or not) has the multivariate dual
Brown–Colbourn property. These conjectures, if true, would constitute a
powerful result of Lee–Yang type, constraining the complex zeros of the
corresponding partition functions.

Recently, however, Royle and Sokal(123) have discovered—to their
amazement—that there exist planar graphs for which all these properties
fail! Indeed, the multivariate Brown–Colbourn and dual Brown–Colbourn
properties fail already for the simplest non-series-parallel graph, namely

19A loop is an edge connecting a vertex i to itself. Loops must be excluded because a loop e
multiples CG by a factor 1+ve and therefore places a root at ve=−1, violating the Brown–
Colbourn property.

20A graph is called series-parallel if it can be obtained from a forest by a sequence of
series and parallel extensions (i.e. replacing an edge by two edges in series or two edges
in parallel). The proof that every loopless series-parallel graph has the multivariate Brown–
Colbourn property is an almost trivial two-line induction; it can be found in ref. 122
(Remark 3 in Section 4.1). Earlier, Wagner(121) had proven, using an ingenious and com-
plicated construction, that every loopless series-parallel graph has the univariate Brown–
Colbourn property.

21A bridge is an edge whose removal increases (by 1) the number of connected components
of the graph. Bridges must be excluded because a bridge e multiplies FG by a factor 1+we
and therefore places a root at we=−1, violating the dual Brown–Colbourn property. Please
note that a planar graph G is loopless (resp. bridgeless) if and only if its dual graph G∗ is
bridgeless (resp. loopless).



1176 Jacobsen et al.

the complete graph on four vertices (K4). The univariate properties fail
for certain graphs that can be obtained from K4 by series and/or paral-
lel extensions. In fact, Royle and Sokal(123) show that a graph G has the
multivariate Brown–Colbourn property if and only if it is series-parallel.

In addition, Chang and Shrock,(23) building on one of the Royle–
Sokal examples, have devised families of strip graphs in which the lim-
iting curve B of zeros of CG(v) penetrates into the “forbidden region”
|1+v|<1.

Nonetheless, the strip graphs studied in this paper do seem to pos-
sess at least the univariate dual Brown–Colbourn property: all the roots
we find lie in the region Rew�−1/2.

2.3. Quantities to be Studied

The graphs G to be considered in this paper are m×n strips of the
square or triangular lattice, with periodic boundary conditions in the first
(transverse) direction and free boundary conditions in the second (longi-
tudinal) direction. We therefore denote these strips as mP × nF, and call
this cylindrical boundary conditions.22 We shall also use the letter L as an
alternative name for the strip width m. All these graphs are planar.

In this paper we will be focussing on FG(w), the generating polyno-
mial of spanning forests. Since we will be assigning the same weight w
to all nearest-neighbor edges, we have a univariate polynomial FG(w). We
will refer to FG(w) as the “partition function” (since that is basically what
it is). Our principal goal is to study the behavior of FG(w) in the thermo-
dynamic limit m,n→∞.

Let us now define the free energy (or “entropy”) per site for a finite
lattice23

fm,n(w) = 1
mn

logFmP×nF(w) (2.27)

and its limiting values for a semi-infinite strip

fm(w) = lim
n→∞

1
mn

logFmP×nF(w) (2.28)

22This accords with the terminology of Shrock and collaborators(124) for the various bound-
ary conditions: free (mF × nF), cylindrical (mP × nF), cyclic (mF × nP), toroidal (mP × nP),
Möbius (mF × nTP) and Klein bottle (mP × nTP). Here F denotes “free”, P denotes “peri-
odic”, and TP denotes “twisted periodic” (i.e. the longitudinal ends are identified with a
reversal of orientation).

23Note that our “free energy” is the negative of the usual free energy.
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and for the infinite lattice

f (w) = lim
m,n→∞

1
mn

logFmP×nF(w) . (2.29)

Here we are assuming, of course, that the indicated limits exist and that
in (2.29) the limit is independent of the way that m and n tend to infin-
ity.24 In particular, in (2.29) we can allow n to tend to infinity first and
then take m→∞, so that

f (w) = lim
m→∞fm(w). (2.30)

Let us also note that for w negative or complex these formulae may con-
tain some ambiguities about the branch of the logarithm. We nevertheless
expect fm(w) and f (w) to be well-defined analytic functions in the com-
plex w-plane minus certain branch cuts; but for simplicity we shall mostly
focus on the real part of the free energy, which does not suffer from any
ambiguities.

For each fixed width m, the partition function FmP×nF(w) for strips
of arbitrary length n can be expressed in terms of a transfer matrix:

FmP×nF(w) = u(w)T T(w)n−1vid(w) (2.31a)

=
M∑

k=1

αk(w)λk(w)
n−1 (2.31b)

where M=dim T is the dimension of the transfer matrix. This is explained
in detail in ref. 5 and is summarized very briefly in Section 4 below. The

24For w � 0, it is not hard to prove rigorously that the limit (2.29) exists, at least if we
insist that m and n tend to infinity in such a way that the ratio m/n stays bounded away
from zero and infinity. The proof is based on the submultiplicativity of FG(w) for disjoint
regions of the lattice, together with a standard result on subadditive functions (ref. 126,
Proposition A.4).

This proof, by itself, says nothing about w negative or complex. But the convergence
can in some cases be extended to part of the complex w-plane, by using a normal-fami-
lies argument.(126,127) Indeed, suppose that D ⊂ C is a connected open set having a non-
empty intersection with the positive real axis, on which the partition function Fm×n(w) is
nonvanishing for all (or all sufficiently large) m,n. Then the trivial bound |Fm×n(w)|� (1+
|w|)2mn guarantees that Refm,n(w) is uniformly bounded above on compact subsets of D,
from which it follows (ref. 127, Example 2.3.9) that the analytic functions {fm,n} form a
normal family on D. Then a Vitali-like argument (ref. 93, Lemma 3.5) shows that the con-
vergence for w�0 extends to all of D. Simon (ref. 128, p. 343) calls this reasoning “log exp
Vitali”.
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elements of the transfer matrix T(w) and of the left and right vectors u(w)
and vid(w) are polynomials in the complex variable w. Therefore, the ei-
genvalues λk(w) and the amplitudes αk(w) are algebraic functions of w.
We have numerically checked for m�9 that none of the amplitudes αk(w)
vanishes identically. This is important in order to compute the limiting
curves B, as one would get the wrong curve B if there were an identically
vanishing amplitude for an eigenvalue that happened to be dominant in
some region of the w-plane.

Let us denote by λ�(w) the eigenvalue of T (w) having largest modu-
lus, whenever it is unique. (Typically there is a unique dominant eigenvalue
at all points in the complex w-plane with the exception of a finite union of
real algebraic curves B.) It follows from (2.31b) that the strip free energy
(2.28) exists at all such points w—except possibly at isolated points where
the amplitude αk corresponding to the dominant eigenvalue vanishes—and
equals

fL(w) = 1
L

logλ�(w) . (2.32)

[In particular, RefL(w)= (1/L) log |λ�(w)|.] We then expect fL(w) to con-
verge as L→ ∞ to the bulk free energy f (w); but the rate at which it
converges depends on whether the model at w is critical or not. If w is
a noncritical point, we expect an exponentially rapid convergence:

fL(w) = f (w) + O(e−L/ξ ) , (2.33)

where ξ <∞ is the correlation length of the system. If w is a critical point,
then we expect that its long-distance behavior can be described by a con-
formal field theory (CFT)(30–32) with some central charge c(w); the general
principles of CFT then predict(129,130) that25

fL(w) = f (w) + πG

6
c(w)

L2
+ · · · (2.34)

where G is a geometrical factor depending on the lattice structure,

G=
{

1, square lattice,√
3/2, triangular lattice

(2.35)

25Note that the 1/L2 correction in (2.34) has the opposite sign from ref. 129 (equation 1).
This change compensates the global change of sign introduced in our definition of the free
energy (2.27), so that the central charge c(w) in (2.34) has the conventional sign.



Spanning Forests and the q-State Potts Model 1179

and the dots stand for higher-order corrections. These higher-order cor-
rections always include a 1/L4 term (with a nonuniversal amplitude) com-
ing from the operator T T̄ , where T is the stress-energy tensor; sometimes
irrelevant operators may give additional corrections in-between 1/L2 and
1/L4.

Let the eigenvalues of the transfer matrix (at some particular value
of w and some particular strip width L) be ordered in modulus as |λ�|�
|λ1|� |λ2|� · · · , and let us define correlation lengths ξ1 � ξ2 � · · · by

ξ−1
i = log

∣∣∣∣
λ�

λi

∣∣∣∣ . (2.36)

Then CFT predicts(93) that, at a critical point, the correlation lengths
behave for large L as

ξ−1
i = 2πG

xi

L
+ · · · (2.37)

where xi is the scaling dimension of an appropriate scaling operator, G is
the geometrical factor (2.35),(131) and the dots stand again for higher-order
corrections.

Remarks. 1. In order to compare our results more directly with
those of mathematicians (e.g., ref. 132), it is convenient to introduce also
the quantities

nm(w) = eRefm(w)=|λ�(w)|1/m, (2.38a)

n(w) = lim
m→∞nm(w)= e

Ref (w). (2.38b)

2. For the square lattice at w= 1, Calkin et al.(132) have proven the
bounds

1.29335 ≈ log 3.64497 � f (sq,w=1) � log 3.74101 ≈ 1.31936 . (2.39)

Their proof uses an m×m lattice with free boundary conditions in both
directions, but the same bound for cylindrical boundary conditions is
an easy corollary. Weaker bounds of the same type were proven earlier
by Merino and Welsh.(133) The upper bound in (2.39) comes from the
inequality (ref. 132, Theorem 5.3)

f (sq,w) � 1
m

log |(1+w)λ(free,m)
� (w)| for all m>0 and w�0,

(2.40)
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where λ(free,m)
� (w) is the dominant eigenvalue of the transfer matrix for a

square-lattice strip of width m with free boundary conditions. (The proof
given in ref. 132 for w = 1 generalizes immediately to any w � 0.) The
upper bound in (2.39) was obtained by evaluating the right-hand side of
(2.40) for m=8. We have slightly improved this upper bound by comput-
ing the dominant eigenvalue at w=1 for m=10:26

1.29335 ≈ log 3.64497 � f (sq,w=1) � log 3.73264 ≈ 1.31711. (2.41)

3. For the triangular lattice one can compute a similar upper bound
for f (tri,w) by mimicking the derivation of (2.40). One obtains the fol-
lowing rigorous upper bound:

f (tri,w) � 1
m

log |(1+w)2λ(free,m)
� (w)| for all m>0 and w�0.

(2.42)

We have obtained a numerical bound by computing the leading eigenvalue
of the transfer matrix at w= 1 for m= 9.27 A trivial lower bound can be
obtained in terms of the entropy per site for spanning trees on the trian-
gular lattice, f0(tri), given in (3.16) below.(114,133−135) Putting these bounds
together, we have

1.61533≈f0(tri) � f (tri,w=1) � log 5.77546 ≈ 1.75362 . (2.43)

2.4. Beraha–Kahane–Weiss Theorem

A central role in our work is played by a theorem on analytic func-
tions due to Beraha, Kahane and Weiss(86,87,90,91) and generalized slightly
by one of us.(92) The situation is as follows: Let D be a domain (connected
open set) in the complex plane, and let α1, . . . , αM,λ1, . . . , λM (M�2) be

26We have obtained the symbolic form of the transfer matrices for square-lattice strips with
free boundary conditions up to widths L � 9F. The dimensions of such matrices were
obtained in closed form in ref. 14 (Theorem 5), and they are listed on column SqFree(L)
in Table I. For L= 10F we have obtained numerically the transfer matrix at w= 1. Details
of these transfer matrices will be given elsewhere.

27We have obtained the symbolic form of the transfer matrices for triangular-lattice strips
with free boundary conditions up to widths L� 8F. The transfer-matrix dimension is the
Catalan number CL; they are listed on column TriFree(L) in Table I. For L= 9F we have
obtained numerically the transfer matrix at w=1. Details of these transfer matrices will be
given elsewhere.
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Table I. Dimensions of the Transfer Matrices for Square- and

Triangular–Lattice Strips of Width L with Cylindrical and Free

Boundary Conditions

L SqCyl(L) TriCyl′(L) SqFree(L) TriFree(L)

1 1 1 1 1
2 2 2 2 2
3 3 3 4 5
4 6 6 10 14
5 10 10 26 42
6 24 28 76 132
7 49 63 232 429
8 130 190 750 1430
9 336 546 2494 4862

10 980 1708 8524 16796
11 2904 5346 29624 58786
12 9176 17428 104468 208012
13 29432 57148 372308 742900
14 97356 191280 1338936 2674440
15 326399 646363 4850640 9694845
16 1111770 2210670 17685270 35357670
17 3825238 7626166 64834550 129644790
18 13293456 26538292 238843660 477638700
19 46553116 93013854 883677784 1767263190
20 164200028 328215300 3282152588 6564120420

TriFree(L) gives the total number of non-crossing partitions of the set
{1,2, . . . ,L}. The other three columns give the number of equivalence
classes of noncrossing partitions of {1,2, . . . ,L} modulo some sym-
metries: SqFree(L) [reflection], TriCyl′(L) [translation], and SqCyl(L)
[translation and reflection]. We show in boldface the dimensions of
the largest transfer matrices that we have used in symbolic form in the
computations reported in this paper.

analytic functions on D, none of which is identically zero. For each inte-
ger n�0, define

fn(z) =
M∑

k=1

αk(z) λk(z)
n . (2.44)

We are interested in the zero sets

Z(fn) = {z∈D : fn(z)=0} (2.45)

and in particular in their limit sets as n→∞:
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lim inf Z(fn) = {z∈D : every neighborhood U � z has a nonempty

intersection with all but finitely many

of the sets Z(fn)}. (2.46)

lim supZ(fn) = {z∈D : every neighborhood U � z has a nonempty

intersection with infinitely many

of the sets Z(fn)}. (2.47)

Let us call an index k dominant at z if |λk(z)|� |λl(z)| for all l (1� l�M);
and let us write

Dk = {z∈D : k is dominant at z} . (2.48)

Then the limiting zero sets can be completely characterized as follows:

Theorem 2.1 (refs. 86, 87, 90–92). Let D be a domain in C, and
let α1, . . . , αM , λ1, . . . , λM (M � 2) be analytic functions on D, none of
which is identically zero. Let us further assume a “no-degenerate-domi-
nance” condition: there do not exist indices k �= k′ such that λk ≡ωλk′ for
some constant ω with |ω|=1 and such that Dk (=Dk′ ) has nonempty inte-
rior. For each integer n�0, define fn by

fn(z) =
M∑

k=1

αk(z) λk(z)
n .

Then lim inf Z(fn)= lim supZ(fn), and a point z lies in this set if and only
if either

(a) There is a unique dominant index k at z, and αk(z)=0; or

(b) There are two or more dominant indices at z.

Note that case (a) consists of isolated points in D, while case (b) consists
of curves (plus possibly isolated points where all the λk vanish simulta-
neously). Henceforth we shall denote by B the locus of points satisfying
condition (b).

Remark. For the strip lattices considered in this paper, we have
looked for isolated limiting points using the determinant criterion.(5) For
L�5, we have found that there are no such limiting points: the dominant
amplitude does not vanish anywhere in the complex w-plane. For L� 6,
we were unable to compute the needed determinants due to memory limi-
tations. But our computations of zeros for finite-length strips (Figs. 5 and
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9) give no indication of any isolated limiting points. We therefore conjec-
ture that there are no isolated limiting points for any of the strip lattices
studied in this paper.

3. SMALL-w AND LARGE-w EXPANSIONS

In this section we discuss the small-w and large-w expansions for the
spanning-forest model.

3.1. Small-w (High-temperature) Expansion

Let us begin by considering spanning forests on an L×L square lat-
tice with periodic boundary conditions in both directions. For small k, it
is easy to count the number of ways of making a k-edge spanning forest;
the result is a polynomial in the volume V =L2 provided that one restricts
attention to L� k+ 1 so as to avoid clusters that “wind around the lat-
tice”. For example, doing this for k�8 one finds

Z
sq
LP×LP

(w) = 1 + 2Vw +
(

2V
2

)
w2 +

(
2V
3

)
w3 +

[(
2V
4

)
−V

]
w4

+
[(

2V
5

)
−V (2V −4)

]
w5

+
[(

2V
6

)
−V (2V 2 −9V +12)

]
w6

+
[(

2V
7

)
− 2V

3
(2V 3 −15V 2 +43V −54)

]
w7

+
[(

2V
8

)
− V

6
(4V 4 −44V 3 +203V 2 −526V +687)

]
w8

+O(w9) , (3.1)

valid for L�9. Taking the logarithm, one finds that each coefficient is pro-
portional to V : all higher powers of V have cancelled. Dividing by V , one
obtains the small-w expansion of the bulk free energy:

f (sq,w) = 2w−w2 + 2
3
w3 − 3

2
w4 + 22

5
w5 − 37

3
w6

+254
7
w7 − 459

4
w8 +O(w9) . (3.2)

Of course, this derivation assumes that the limit L→ ∞ can validly
be interchanged with expansion in w. This can presumably be proven with
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additional work, by methods of the cluster expansion.(136) It can presum-
ably also be proven, by the same methods, that this small-w expansion
is convergent in some disc |w|< ε. Note, finally, that we have for sim-
plicity used here periodic boundary conditions in both directions, in con-
trast to the cylindrical boundary conditions used elsewhere in this paper;
but this change should make no difference, because the bulk free energy
is expected to be independent of boundary conditions. This can be proven
rigorously for w�0, by “soft” methods; and by cluster-expansion methods
it can presumably be proven also in some disc |w|<ε.

For the triangular lattice one can perform a similar small-w expan-
sion of the spanning-forest partition function. On an L×L triangular lat-
tice with periodic boundary conditions in both directions, the result for
k�5 is

Ztri
LP×LP

(w) = 1 + 3Vw +
(

3V
2

)
w2 +

[(
3V
3

)
−2V

]
w3

+
[(

3V
4

)
−3V (2V −1)

]
w4

+
[(

3V
5

)
−3V 2(3V −4)

]
w5 + O(w6) , (3.3)

valid for L�6. Taking the logarithm, one finds again that each coefficient
is proportional to V . Dividing by V , one obtains the small-w expansion
of the bulk free energy for the triangular lattice:

f (tri,w) = 3w− 3
2
w2 −w3 + 9

4
w4 + 3

5
w5 +O(w6) . (3.4)

If one wants to extend these expansions to higher order, direct enu-
meration becomes increasingly tedious and cumbersome. A vastly more
efficient approach is the finite-lattice method.(137) For the square lattice,
one can write the small-w expansion of the infinite-volume free energy
as(137,138)

f (w) ≡ lim
N→∞

1
N2

logZfree
N×N(w)

=
∑

(q,r)∈B(k)
αk(q, r) logZfree

q×r (w) + O(w2k−2) , (3.5)

where Zfree
q×r (w) is the partition function for a square-lattice grid of size q×

r with free boundary conditions, and the sum is taken over all rectangles
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belonging to the set

B(k) = {(q, r) : q� r and q+ r�k} . (3.6)

The weights αk(q, r) are defined as

αk(q, r) =





2Wk(q, r) for q <r,
Wk(q, q) for q= r,
0 for q >r,

(3.7)

where

Wk(q, r) =






1 for q+ r=k,
−3 for q+ r=k−1,
3 for q+ r=k−2,
−1 for q+ r=k−3,
0, otherwise.

(3.8)

The error term in (3.5) is given by the smallest connected graph with
no vertices of order 0 or 1 that does not fit into any of the rectangles
in B(k).(137) For the square lattice, this graph is a rectangle of perime-
ter 2k− 2, hence the error term w2k−2. The main limiting factor on this
method is the maximum strip width Lmax we are able to handle (due
essentially to memory constraints). In particular, if we set the cut-off k to
2Lmax + 1, then formula (3.5) gives the free-energy series correct through
order w4Lmax−1.28

The extension of this method to the triangular lattice is straightfor-
ward: the free energy can be approximated using (3.5), and the weights
are given by (3.7)/(3.8).(139) However, the method is less efficient than for
the square lattice, as the error term is now larger than that of (3.5). If
Lmax is the maximum width we can compute and if we set the cut-off
k=2Lmax +1 as before, then the smallest graphs not fitting into any of the
rectangles in B(k) are trapezoids that have inclined sides of lengths Lmax
and Lmax −1, respectively, together with one vertical side of length 1 and
one horizontal side of length 1. The perimeter of such graphs is 2Lmax +
1, which implies that (3.5) gives the free energy for the triangular-lattice
model correct through order w2Lmax .29 This series can be improved slightly

28We have confirmed this fact empirically by doing runs for different values of Lmax and
checking to what order they agree.

29Once again, we have confirmed this fact empirically by doing runs for different values of
Lmax and checking to what order they agree.
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by noticing that the correct term of order w2Lmax+1 can be obtained by
adding the quantity −2w2Lmax+1 to the finite-lattice-method result.30

We have computed the partition functions Zfree
q×r (w) for both the

square and triangular lattices, by using two complementary methods based
on the transfer-matrix approach (see Section 4). We obtained the explicit
symbolic form of the transfer matrix for square-lattice strips of widths L�
9F and for triangular-lattice strips of widths L� 8F; we then computed
the partition functions Zfree

q×r (w) using the standard formulae.(5) For larger
widths (up to Lmax =12F), we were unable to compute the transfer matrix
explicitly; rather, we used two independent programs (written in C and
Perl, respectively) to build the partition functions layer-by-layer. To handle
the large integers that occur in the computation of the partition function
for large lattices, we used modular arithmetic and the Chinese remainder
theorem. For the square (resp. triangular) lattice, we obtained the first 47
(resp. 25) terms of the free-energy series

f (w)=
∞∑

k=1

fkw
k . (3.9)

The results are displayed in Table II. It is interesting to note that for all the
free-energy coefficients fk we have computed, the quantity kfk is an integer; it
would be interesting to understand combinatorially why this is so. From these
series expansions one can easily obtain the corresponding small-w expansions
for the derivatives of the free energy (by differentiating the series term-by-term
with respect tow). The analysis of these series is deferred to Appendix A.

3.2. Large-w (Perturbative) Expansion

On any graph G= (V ,E), the generating polynomial of spanning for-
ests can be written as

FG(w) = w|V |−1
∞∑

k=1

ck(G)

wk−1
, (3.10)

where ck(G) is the number of k-component spanning forests on G (in par-
ticular, c1(−G) is the number of spanning trees of G). Taking logarithms,

30We discovered this fact empirically by comparing the series obtained for two consecutive
values of Lmax. In all cases, we found that the difference was precisely −2w2Lmax+1 +
O(w2Lmax+2). It would be interesting to find a combinatorial proof of this fact (if indeed
it is true in general).
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Table II. Small-w (High-Temperature) Expansions for the Bulk Free Energy

f (LLL,w)=∑∑∑∞
k=1fk(LLL)wk for the Square and Triangular Lattices

k kfk(sq) kfk(tri)

1 2 3
2 −2 −3
3 2 −3
4 −6 9
5 22 3
6 −74 −33
7 254 3
8 −918 393
9 3422 −2325

10 −12862 9327
11 48138 −24483
12 −178530 1815
13 655826 458253
14 −2391370 −3497133
15 8688262 17900097
16 −31600918 −70905543
17 115606190 209837565
18 −426864494 −314875455
19 1593065490 −1242857637
20 −6004037966 13767148419
21 22795625582 −73591894407
22 −86925982926 264618912819
23 332053760646 −455046987303
24 −1268578680714 −2402029948737
25 4844247521322 31594277221653
26 −18494593884938
27 70644561464090
28 −270190727926594
29 1035346222307838
30 −3976144389096514
31 15304261265448246
32 −59027790560689238
33 228068574553887894
34 −882464779625379526
35 3418403165602360314
36 −13253811969559767270
37 51425605359158653378
38 −199663639129405278414
39 775682274057446798018
40 −3015326560156376960998
41 11728909932236608346846
42 −45652065541079598767758
43 177805114097058031764786
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Table II. (Continued)

k kfk(sq) kfk(tri)

44 −692953582585445674377902

45 2702276554574318555870842

46 −10544061987158176469650990

47 41164706135505931628292550

For simplicity we present here, instead of the coefficient fk(L), the product kfk(L), which is
always an integer.

we find

1
|V | logFG(w) = |V |−1

|V | logw + 1
|V | log c1(G)

+ 1
|V | log

[

1 +
∞∑

k=2

ck(G)

c1(G)
w−(k−1)

]

. (3.11)

In particular, if we take G to be a large piece of a regular lattice (with
a not-too-eccentric shape), then in the infinite-volume limit we expect the
coefficients of this series to tend term-by-term to limits. If this indeed
occurs, we obtain a large-w expansion of the form

f (w) = logw + f0 + f1

w
+ f2

w2
+ · · · . (3.12)

Let us now demonstrate, in the case of the first nontrivial term, that
this convergence indeed occurs; we shall explicitly compute the limiting
value f0, which is the entropy per site for spanning trees on G. By the
matrix-tree theorem, (ref. 140, Corollary 6.5) c1(G) equals 1/|V | times the
product of the nonzero eigenvalues of the Laplacian matrix of G. For an
L×· · ·×L simple-hypercubic lattice in d dimensions with periodic bound-
ary conditions in all directions, the eigenvectors of the Laplacian are Fou-
rier modes, and the eigenvalues can be written explicitly;(134) we have

c1(L×· · ·×L) = 1
Ld

∏

p∈{0,2π/L, . . . ,2(L−1)π/L}d
p �=0

[

2
d∑

i=1

(1− cospi)

]

.

(3.13)
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Therefore, in the infinite-volume limit we obtain31

lim
L→∞

1
Ld

log c1(L×· · ·×L) =f0 =
∫

[−π,π ]d

ddp

(2π)d
log

[

2
d∑

i=1

(1− cospi)

]

.

(3.14)

(This integral is infrared-convergent in any dimension d > 0.) Analogous
formulae hold for other regular lattices.(114,134,135,142) For the standard
two-dimensional lattices one can carry out the integrals explicitly, yield-
ing(114,134,135)

f0(sq) = 4
π

∞∑

k=0

(−1)k

(2k+1)2
= 4G

π
≈ 1.166 243 616 123 . . . (3.15)

f0(tri) = 3
√

3
π

∞∑

k=0

(
1

(6k+1)2
− 1
(6k+5)2

)
=

√
3

12π
[ψ ′(1/6)−ψ ′(5/6)]

≈ 1.615 329 736 097 . . . (3.16)

where G is Catalan’s constant and ψ ′(z) = (d2/dz2) log�(z) is the first
derivative of the digamma function. See also ref. 142 for high-precision
computations of f0 on the simple hypercubic lattice in dimensions 3 �
d � 20, as well as on the body-centered hypercubic lattice in dimensions
3 and 4.

We defer to a later paper(143) the computation of f1, f2, . . . , which
can be obtained by perturbative expansion in a fermionic theory that con-
tains a Gaussian term and a special four-fermion coupling (see ref. 24 for
details). It is worth mentioning that this perturbation expansion can some-
times be infrared-divergent, reflecting the fact that the coefficients of (3.11)
may in fact diverge as L→∞. For example, in dimension d=1 with peri-
odic boundary conditions, we have the exact formula

FLP(w) = (1+w)L−wL

= LwL−1
[

1 + L−1
2

w−1 + (L−1)(L−2)
6

w−2 + · · ·
]
,

(3.17)

31The same formula holds for the infinite-volume limit of free boundary conditions, but the
proof is more complicated: see e.g. ref. 141 and the references cited in ref. 141 (footnote 1).
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so that

1
L

logFLP(w) = L−1
L

logw + logL
L

+L−1
2L

w−1 + (L−1)(L−5)
24L

w−2 + · · · . (3.18)

We see that f1 = 1/2, but f2 is infrared-divergent (as are f3 and subse-
quent terms). We do not yet know whether f2, f3, . . . are infrared-finite in
dimension d=2.

We can estimate the first terms fi by computing f (w) numerically at
a set of (large) values of w, and trying to fit it to a polynomial Ansatz in
1/w:

Ref (w)− log |w|−f0 =
kmax∑

k=1

fk

wk
. (3.19)

For this calculation, we began by computing the finite-width free energies
fL(w) at w= ±2,±3, . . . ,±10 on strips up to L= 14P (square) and L=
13P (triangular). We then estimated the infinite-volume free energy f (w)

by extrapolating the finite-width data using the Ansatz (7.35) below (see
Sections 7.4 and 7.8 for details). Finally, we used a polynomial fit (3.19)
with kmax = 5 to obtain the subleading coefficients fk for k = 1, . . . ,5,
fitting separately the data with w > 0 and w < 0. More precisely, each
sign of w and each value of wmin = 2, . . . ,6, we fit the points with
|w|=wmin,wmin + 1, . . . ,wmin + 4 to the Ansatz (3.19) with kmax = 5. The
observed variations in the parameter estimates are due to the neglected
higher-order terms k >kmax in (3.19). These fits are displayed in the rows
labelled “Non-Biased” in Tables III (square lattice) and IV (triangular
lattice).

It is clear that the coefficient f1 is close to 0.25 = 1/8 for the square
lattice and to 0.08333 ≈ 1/12 for the triangular lattice. This motivates the
following conjecture:

Conjecture 3.1. For any regular lattice in dimension d � 2 with
coordination number r, the large-w series expansion of the spanning–
forest free energy takes the form

f (w) = log |w| + f0 + 1
2r

1
w

+ O(w−2), (3.20)

where f0 gives the entropy per site for spanning trees on the lattice in
question.
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Table III. Fits of the Large-w Series for the Square Lattice

Type wmin f1 f2 f3 f4 f5

Non-biased 2 0.12499 0.01005 0.00349 0.00405 0.00020
3 0.12499 0.01002 0.00366 0.00357 0.00070
4 0.12499 0.01004 0.00354 0.00400 0.00013
5 0.12499 0.01006 0.00330 0.00500 −0.00144
6 0.12499 0.01009 0.00297 0.00662 −0.00441

Biased 2 1/8 0.00995 0.00397 0.00300 0.00101
3 1/8 0.00992 0.00429 0.00173 0.00263
4 1/8 0.00990 0.00462 0.00015 0.00521
5 1/8 0.00988 0.00505 −0.00244 0.01029
6 1/8 0.00985 0.00564 −0.00652 0.01966
7 1/8 0.00982 0.00640 −0.01260 0.03571

Non-biased −2 0.12500 0.00998 0.00398 0.00250 0.00096
−3 0.12500 0.01001 0.00415 0.00300 0.00149
−4 0.12501 0.01003 0.00436 0.00373 0.00245
−5 0.12501 0.01006 0.00462 0.00484 0.00420
−6 0.12501 0.01009 0.00496 0.00652 0.00728

Biased −2 1/8 0.00993 0.00374 0.00198 0.00056
−3 1/8 0.00992 0.00358 0.00135 −0.00024
−4 1/8 0.00990 0.00329 −0.00007 −0.00256
−5 1/8 0.00988 0.00286 −0.00262 −0.00756
−6 1/8 0.00985 0.00227 −0.00671 −0.01697
−7 1/8 0.00982 0.00150 −0.01284 −0.03314

We show the estimates of the fits of the (infinite-volume) free-energy data (for large values of
|w|� 2) to the Ansatz (3.19) with kmax = 5. The column “Type” shows whether f1 has been
left free in the fit (“Non-Biased”) or it has been fixed to its conjectured value 1/8 (“Biased”).
Non-biased fits are based on data points with |w|=wmin, . . . ,wmin + 4; biased fits are based
on data points with |w|=wmin, . . . ,wmin +3.

Note that the formula (3.20) is false in dimension d = 1: as seen from
(3.18), we have f1 =1/2, not 1/4.

We have redone the above fits by fixing f1 to its conjectured value
1/(2r). Then, for each sign of w and each value of wmin =2, . . . ,7, we fit
the points with |w|=wmin, . . . ,wmin +3 to this biased Ansatz. The results
are shown in rows labelled “Biased” in Tables III and IV. The next coeffi-
cient f2 appears to take the same value for the fits with positive and neg-
ative values of w: f2(sq)≈0.0098 and f2(tri)≈0.0025.

Remark. We have very recently proven Conjecture 3.1, and have also
understood why d=1 is an exception. These results will be reported else-
where.(143)
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Table IV. Fits of the Large-w Series for the Triangular Lattice

Type wmin f1 f2 f3 f4 f5

Non-biased 2 0.08333 0.00285 0.00080 0.00039 −0.00006
3 0.08333 0.00286 0.00076 0.00049 −0.00005
4 0.08333 0.00286 0.00070 0.00069 −0.00031
5 0.08333 0.00287 0.00062 0.00103 −0.00085
6 0.08333 0.00288 0.00052 0.00156 −0.00181

Biased 2 1/12 0.00283 0.00089 0.00019 0.00022
3 1/12 0.00283 0.00095 −0.00005 0.00053
4 1/12 0.00282 0.00105 −0.00052 0.00129
5 1/12 0.00281 0.00118 −0.00134 0.00290
6 1/12 0.00280 0.00137 −0.00264 0.00589
7 1/12 0.00279 0.00161 −0.00459 0.01103

Non-biased −2 0.08333 0.00285 0.00087 0.00036 0.00012
−3 0.08333 0.00286 0.00091 0.00048 0.00025
−4 0.08334 0.00286 0.00097 0.00069 0.00052
−5 0.08334 0.00287 0.00105 0.00103 0.00106
−6 0.08334 0.00288 0.00115 0.00156 0.00202

Biased −2 1/12 0.00283 0.00078 0.00017 −0.00003
−3 1/12 0.00283 0.00072 −0.00006 −0.00033
−4 1/12 0.00282 0.00062 −0.00054 −0.00109
−5 1/12 0.00281 0.00048 −0.00136 −0.00271
−6 1/12 0.00280 0.00030 −0.00267 −0.00572
−7 1/12 0.00279 0.00005 −0.00463 −0.01089

We show the estimates of the fits of the (infinite-volume) free-energy data (for large values
of |w| � 2) to the Ansatz (3.19) with kmax = 5. The column “Type” shows whether f1 has
been left free in the fit (“Non-Biased”) or it has been fixed to its conjectured value 1/12
(“Biased”). Non-biased fits are based on data points with |w|=wmin, . . . ,wmin +4; biased fits
are based on data points with |w|=wmin, . . . ,wmin +3.

4. TRANSFER MATRICES

The first step in our analysis is to compute the transfer matrix T and
the vectors u and vid that appear in (2.31a). We can proceed in three alter-
native ways:

(a) Compute the transfer matrix for the general q-state Potts model,
symbolically as a polynomial in q and v. (See ref. 5 for the theory, and
refs. 14,15 for the computations.) Then perform the limit q, v→0 with w=
v/q fixed.

(b) Take the limit q, v→0 with w=v/q fixed right at the beginning,
and compute the transfer matrix for the spanning-forest problem, symbol-
ically as a polynomial in w.
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(c) Same as (b), but compute the transfer matrix numerically for a
specified (but arbitrary) value of w.

For L� 9 we used methods (a) and (b), and verified that they give the
same answer (this is an important check on the correctness of our pro-
grams). For L= 10 we could use only method (b). For L� 11 we were
unable to perform the computation symbolically; we therefore performed
the computations numerically (using machine double-precision) for 11 �
L�16 at selected real values of w.

The dimension of the transfer matrix for a square-lattice strip of
width L and cylindrical boundary conditions is given by SqCyl(L) in
Table I. It coincides with the dimension of the transfer matrix for the full
Tutte polynomial on square-lattice strips with the same boundary condi-
tions,(14) and equals the number of equivalence classes modulo translation
and reflection of non-crossing partitions of {1,2, . . . ,L}. This number is
denoted by NZ,sq,PF,L in refs. 14,15; see (4.2) below for an exact formula.

The dimension of the transfer matrix for a triangular-lattice strip of
width L and cylindrical boundary conditions is given by TriCyl′(L) in
Table I. It coincides with the dimension of the transfer matrix for the full
Tutte polynomial on triangular-lattice strips with the same boundary con-
ditions,(15) and equals the number of equivalence classes modulo trans-
lation of non-crossing partitions of {1,2, . . . ,L}. In ref. 15 TriCyl′(L) is
denoted NZ,tri,PF,L, and an exact formula is provided:

TriCyl′(L)= 1
L



 1
L+1

(
2L
L

)
+

∑

d|L,1�d<L
φ(L/d)

(
2d
d

)

 , (4.1)

where d|L means that d divides L, and φ(n) is the Euler totient function
(i.e. the number of positive integers k� n that are relatively prime to n).
The sequence TriCyl′(L) is given as sequence A054357 in ref. 144; it equals
the number of bi-colored unlabelled plane trees having L edges.(145)

As in previous work on other cases of the Potts model,(7,15) we
can reduce the dimension of this transfer matrix down to TriCyl(L) =
SqCyl(L) by noting that in the translation-invariant subspace of connectiv-
ities, the transfer matrix does commute with reflections (see ref. 7 [begin-
ning of Section 4] for a detailed explanation). Thus, in a new basis with
connectivities that are either odd or even under reflection, the transfer
matrix takes a block-diagonal form: the block that is even under reflection
has dimension TriCyl(L) = SqCyl(L) and a nonvanishing amplitude; the
block that is odd under reflection has a zero amplitude and hence does
not contribute to the partition function.
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The dimensions SqCyl = TriCyl and TriCyl′ are related by the follow-
ing equation (proved in ref. 15):

SqCyl(L)=TriCyl(L)= 1
2

[
TriCyl′(L)+

(
L

�L/2�
)]
. (4.2)

The numerical values of SqCyl(L) and TriCyl′(L) up to L=20 are shown
in Table I. Both grow asymptotically like 4LL−5/2 as L→∞.

5. SQUARE-LATTICE STRIPS WITH CYLINDRICAL BOUNDARY

CONDITIONS

For each lattice width L up to L=10, we have computed symbolically
the transfer matrix T and the vectors u and vid. Then we computed the
zeros of the partition function FmP×nF(w) for strips of aspect ratio ρ= 5
and ρ = 10; and for L� 8 we also computed the accumulation set B of
partition-function zeros in the limit ρ→∞. For L=9,10 we were unable
to compute the full limiting curve B, but we did compute some selected
points along it.

The limiting curves B resulting from these computations are shown
in Figs. 3–6 (superposed in Fig. 7), and their principal characteristics are
summarized in Table V. One interesting feature of B is the point(s) where
it crosses the real w-axis. For odd width L, it turns out that there is only
one such point, which we shall denote w0Q(L). For even width L, by
contrast, B contains a real segment [w0−(L), w0+(L)]. This segment con-
tains a multiple point of B, where an arc of B lying at Imw �= 0 crosses
the real axis; we shall denote this point w0Q(L). It is a curious fact that
for the even-width square lattices considered here (L= 2,4,6,8,10), we
find w0+(L)=−1/4 exactly. Finally, we define wB(L) to be the complex-
conjugate pair of endpoints of B with the largest real part.

For L � 5 we computed the limiting curve B using the resultant
method explained in ref. 5, Section 4.1.1. For L=6, we computed the end-
points using this method, and the rest of B using the direct-search method
explained in ref. 5, Section 4.1.2. In all these cases we can be sure that
we did not miss any endpoints or connected components of B. For L�7,
by contrast, we were unable to compute the resultant; we therefore located
B using the direct-search method. Here we could easily have missed some
small components of B. Our reports in Table V for the number of con-
nected components (#C), endpoints (#E) and multiple points (#Q) must
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Fig. 3. (Color online) Limiting curves for square-lattice strips of width (a) L=2, (b) L=3,
(c) L=4, and (d) L=5 with cylindrical boundary conditions. We also show the zeros for the
strips LP × (5L)F (black �) and LP × (10L)F (red ◦) for the same values of L.

therefore be viewed for L� 7 as lower bounds. For L� 9 the computa-
tion of the limiting curve B is very time-consuming; we therefore com-
puted only a few important points.
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Fig. 4. (Color online) Blow-up of Figure 3(c) around the T point w0− ≈ −0.2776248333.
The multiple point is located at w≈−0.2775806860.

5.1. L=2

In this case the connectivity basis is two-dimensional. The transfer
matrix T and the vectors vid and u are given by

T =
(

w2 2w3

2w+1 5w2 +4w+1

)
, (5.1a)

uT = (1,2w+1) , (5.1b)

vT
id = (0,1) . (5.1c)

The zeros of the polynomials F2P×nF(w) with n = 10,20 are displayed
in Fig. 3(a). In the same figure we also show the limiting curve B.
The curve B is connected: it is the union of a horizontal segment run-
ning from w0− = −1/2 to w0+ = −1/4 and an arc running between the
complex-conjugate endpoints wB =−1/4 ± (√3/4)i. The segment and the
arc cross at the multiple point at w0Q≈−0.3660254038.

It is worth noting that, even though the curve B contains the point
w=−1/2 as an endpoint, the value w=−1/2 is not a zero of the parti-
tion function for any finite strip 2P ×nF other than the trivial case n= 1.
As a matter of fact, the partition function takes the value

F2P×nF(w=−1/2) = −(n−1)/4n−1 . (5.2)
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Fig. 5. (Color online) Limiting curves for square-lattice strips of width (a) L=6, (b) L=7,
(c) L=8, and (d) L=9 with cylindrical boundary conditions. We also show the zeros for the
strips LP × (5L)F (black �) and LP × (10L)F (red ◦) for the same values of L.

This observation supports the conjecture that there are no roots in
the half-plane Rew<−1/2, i.e. that the family 2P ×nF of strip graphs pos-
sesses the univariate dual Brown-Colbourn property for all finite lengths n.
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Fig. 6. (Color online) Limiting curve for the square-lattice strip of width L=10 with cylin-
drical boundary conditions. We also show the zeros for the strips 10P × 50F (black �) and
10P ×100F (red ◦).

5.2. L=3

The connectivity basis is three-dimensional; the transfer matrix T and
the vectors vid and u are given by

T =



w3 6w4 3w5

w2 w2(7w+1) w3(4w+1)
3w+1 3(8w2 +5w+1) 16w3 +15w2 +6w+1



 , (5.3a)

uT =
(

1,3(2w+1),3w2 +3w+1
)
, (5.3b)

vT
id = (0,0,1) . (5.3c)

The zeros of the polynomials F3P×mF(w) with n = 15,30 are displayed
in Fig. 3(b), along with the limiting curve B. The curve B has three
connected components. One of them runs between the complex-conjugate
endpoints −0.2432796623 ± 0.1389560739 i and intersects the real w-axis
at w0Q ≈ −0.2868497019. The other two run from w≈ −0.3020539886 ±
0.1587843374 i to wB ≈−0.0574443351±0.4806253161 i.
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Fig. 7. (Color online) Limiting curves for square-lattice strips of widths L: 2 (black),
3 (red), 4 (green), 5 (blue), 6 (pink), 7 (brown), 8 (red), 9 (green), and 10 (blue). The dot-
ted-dashed vertical (brown) line marks the line Re(w)= −1/2. As L increases, the limiting
curve moves towards the right. We have also depicted our estimate for the L→ ∞ limiting
curve in the interval −0.33 ∼< Imw∼< 0.33 (black dots) and our very rough estimate beyond
this (black dotted-dashed curve).

5.3. L=4

The connectivity basis is six-dimensional; the transfer matrix T and
the vectors vid and u are given by

T =






w4 8w5 4w5 12w6 8w6 4w7

w3 w3C9 4w4 2w4C7 2w4C5 w5C5
0 0 w4 2w5 0 w6

w2 2w2C5 w2C6 w2D21,8 4w3C3 w3D9,5
w2 2w2C5 4w3 4w3C4 w2D13,6 2w4C3

4w+1 4D11,6 2D12,6 4C3D8,4 2C3D10,5 T6,6






,

(5.4a)

uT =
(

1,4C2,2C2,4D3,3,2C
2
2 ,C2D2,2

)
, (5.4b)

vT
id = (0,0,0,0,0,1) , (5.4c)
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where we have used the shorthand notations

Ck(w) = kw+1, (5.5a)

Dm,n(w) = mw2 +nw+1, (5.5b)

T6,6(w) = 45w4 +52w3 +28w2 +8w+1. (5.5c)

The zeros of the polynomials F4P×nF(w) with n = 20,40 are dis-
played in Fig. 3(c), along with the limiting curve B. The curve B has
three connected components. One of them is the union of a horizontal
segment running from w0− ≈ −0.2776248333 to w0+ = −1/4 and an arc
running between the complex-conjugate endpoints w ≈ −0.2252016334 ±
0.2287233280 i. The segment and the arc cross at the multiple point
at w0Q ≈ −0.2670015604. The other two components are complex-con-
jugate arcs running from w ≈ −0.2068057238 ± 0.2160687519 i to wB ≈
0.0632994010 ± 0.5099839130 i. Finally, there is a pair of very small
complex-conjugate bulb-like regions emerging from the endpoint w0− ≈
−0.2776248333—which is therefore a T point—and going back to the real
w-axis at the multiple point w≈ −0.2775806860: see the blow-up picture
in Fig. 4.

5.4. L=5,6,7,8,9,10

The transfer matrices for L� 5 are too lengthy to be quoted here.
Those for L�9 can be found in the Mathematica file forests sq 2-9P.m
that is available with the electronic version of this paper in the cond-mat
archive at arXiv.org. The file for L=10, which is 13.6 MB long, can be
obtained on request from the authors.

We have plotted for each L (=5,6,7,8,9,10) the zeros of FLP×(ρL)F(w)
for aspect ratios ρ = 5,10 as well as the limiting curves B (ρ = ∞). See
Fig. 3(d) for L=5, Figs. 5 (a,b,c,d) for L=6,7,8,9, and Fig. 6 for L=10.

The principal features of the limiting curves B are summarized in
Table V. For L=5, there are 10 endpoints located at w≈−0.2645566722±
0.0812460198 i, −0.2562049781 ± 0.0804259250 i, −0.1745330113 ±
0.2687656693 i, −0.1684195011 ± 0.2629234881 i, and 0.1533657968 ±
0.5306112949 i (the latter is wB ). The limiting curve crosses the real axis
at w0Q≈−0.2620754678.

For L = 6 there is a multiple point at w0Q ≈ −0.2563792782. This
point belongs to a horizontal segment running from w0− ≈−0.2609570768
to w0+ = −1/4. There are 10 more endpoints at w ≈ −0.2441302665 ±
0.1392115396 i, −0.2401194057 ± 0.1380752982 i, −0.1359169474 ±
0.2964285650 i, −0.1338793838 ± 0.2939739183 i, and 0.2262944917 ±
0.5460127254 i (the latter is wB ).
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For L = 7 there are 14 endpoints located at w ≈ −0.258797 ±
0.056312 i, −0.256989 ± 0.056335 i, −0.222450 ± 0.180872 i, −0.220899 ±
0.180261 i, −0.103677 ± 0.316136 i, −0.104346 ± 0.317122 i, and
0.2879810252±0.5579895735 i (the latter is wB ). The limiting curve crosses
the real w-axis at w0Q≈−0.2559077691.32

For L= 8, we find a multiple point at w0Q ≈ −0.2532620078, which
belongs to a horizontal segment running from w0− ≈ −0.2556827597 to
w0+ = −1/4. There are 14 additional endpoints at w ≈ −0.250381 ±
0.101684 i, −0.249500 ± 0.101496 i, −0.201140 ± 0.212546 i, −0.200485 ±
0.212232 i, −0.077462 ± 0.333326 i, −0.077248 ± 0.332940 i, and
0.3415981731±0.5675966263 i (the latter is wB ).

For L=9 we were unable to compute the full limiting curve B, but we
were able to compute the points corresponding to fixed values of | Imw|=
0,0.01,0.02, etc. These points give us a rough idea of the shape of the
limiting curve. In carrying out this computation, it is important to keep
track of the quantity θ = | Im log(λ�/λ′

�)| as we move along the limiting
curve B (here λ� and λ′

� denote the dominant equimodular eigenvalues),
since θ vanishes at endpoints.(5) By careful monitoring of the angle θ , we
can obtain a lower bound on the number of endpoints and connected
components of the curve B. In particular, for L= 9 we have found that
there are at least 18 endpoints and 9 connected components (see Table V).
We have also computed the point where the the limiting curve crosses
the real w-axis w0Q≈−0.2534832041, and the rightmost endpoints wB ≈
0.3890914478±0.5754959494 i.

For L= 10 the computation of the limiting curve B using arbitrary-
precision Mathematica scripts is beyond our computer facilities. How-
ever, we have been able to compute some points along this curve (those
corresponding to | Imw|=0,0.01,0.02, etc.) by using the double-precision
Fortran subroutines of the arpack package.(146)33 We find a multiple point
at w0Q≈−0.2519570283. This point belongs to a horizontal segment run-

32As explained at the beginning of this section, we located the endpoints using the resultant
method for L�6 and the direct-search method for L�7. The direct-search method is quite
efficient for locating a real endpoint, but is extremely tedious for locating a complex end-
point (since we have to search a two-dimensional space). This explains why the precision
obtained for the complex endpoints with L� 7 (error ≈ 10−6) is inferior to that obtained
both for the endpoints with L� 6 and for the real endpoints with L� 7 (error ≈ 10−10).
However, we have put an extra effort in computing the rightmost complex endpoints wB
for L�7 with error ≈10−10 (see Section 7).

33The arithmetic precision of the arpack package is thus less than that of Mathematica.
However, we have checked in a difficult but manageable case (L = 9) that the results
obtained by the two methods agree to at least 10 decimal digits. We have also checked the
performance of the arpack routines at some specific points (w0+, w0− and w0Q) for L=10,
and the disagreement with Mathematica is again less than 10−10.
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ning from w0− ≈ −0.2534268314 to w0+ = −1/4. Using the same method
as in L= 9 we have concluded that B is formed by at least 9 connected
components and contains at least 20 endpoints. Finally, we have computed
the rightmost endpoints wB ≈0.4317571213±0.5821234989 i.

6. TRIANGULAR-LATTICE STRIPS WITH CYLINDRICAL BOUNDARY

CONDITIONS

We performed for the triangular lattice the same calculations as for
the square lattice. Thus, for each strip width L � 10 we computed the
transfer matrix and the associated left and right vectors; from these we
obtained the partition-function zeros for strips with aspect ratio ρ= 5,10
as well as the limiting curves B corresponding to the limit ρ→ ∞. The
limiting curves B resulting from these computations are shown in Figs. 8–
10 (superposed in Fig. 11), and their principal features are summarized
in Table VI. Once again, the full curves B are computed by the resultant
method for L� 5, by a combination of the resultant method (endpoints
only) and direct search for L= 6, and by the direct-search method for
L�7.

6.1. L=2

The connectivity basis is two-dimensional, and the transfer matrix T,
and the vectors vid and u are given by

T =
(

4w2 2w2(6w+1)
4w+1 12w2 +6w+1

)
, (6.1a)

uT = (1,2w+1) , (6.1b)

vT
id = (0,1) . (6.1c)

We display in Fig. 8(a) the zeros of the polynomials F2P×nF(w) with
n = 10,20, along with the corresponding limiting curve B. The curve
B is connected: it is the union of a horizontal segment running from
w0− = −1/4 to w0+ ≈ −0.2017782928 and an arc running between the
complex-conjugate endpoints wB ≈ −0.1178608536 ± 0.2520819223 i. (The
latter three points are the roots of the polynomial 1 + 8w + 28w2 +
64w3.) The segment and the arc cross at the multiple point at w0Q ≈
−0.2251972448.



1204 Jacobsen et al.

Fig. 8. (Color online) Limiting curves for triangular-lattice strips of width (a) L=2, (b) L=
3, (c) L= 4, and (d) L= 5 with cylindrical boundary conditions. We also show the zeros for
the strips LP × (5L)F (black �) and LP × (10L)F (red ◦) for the same values of L.

6.2. L=3

The connectivity basis is three-dimensional, and the transfer matrix T,
and the vectors vid and u are given by

T =



8w3 6w3(12w+1) 9w4(6w+1)
4w2 2w2(19w+3) w2(30w2 +10w+1)

6w+1 3(20w2 +8w+1) 50w3 +33w2 +9w+1



 , (6.2a)
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Fig. 9. (Color online) Limiting curves for triangular-lattice strips of width (a) L=6, (b) L=
7, (c) L= 8, and (d) L= 9 with cylindrical boundary conditions. We also show the zeros for
the strips LP × (5L)F (black �) and LP × (10L)F (red ◦) for the same values of L.

uT =
(

1,3(2w+1),3w2 +3w+1
)
, (6.2b)

vT
id = (0,0,1) . (6.2c)

We display in Fig. 8(b) the zeros of the polynomials F3P×nF(w) with n=
15,30, along with the corresponding limiting curve B. The curve B has
three connected components. One of them runs between the complex-
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Fig. 10. (Color online) Limiting curve for the triangular-lattice strip of width L= 10 with
cylindrical boundary conditions. We also show the zeros for the strips 10P × 50F (black �)
and 10P ×100F (red ◦).

conjugate endpoints w ≈ −0.1763241163 ± 0.1013423678 i and intersects
the real w-axis at w0Q ≈ −0.1921127637. The other two run from w ≈
−0.1662139535±0.0960130540 i to wB ≈−0.0100833905±0.2849353892 i.

6.3. L=4

The connectivity basis is six-dimensional; the transfer matrix T, and
the vectors vid and u are given by

T =






16w4 16w4C12 96w5 48w5C9 2w4C2
12 36w6C6

8w3 12w3C8 2w3C24 w3T2,4 2w3C6C12 3w4D36,11
0 8w4 8w4 8w4C6 3w4C8 w4C2

6
4w2 2w2T4,2 4w2C8 2w2T4,4 w2T4,5 T4,6
4w2 8w2C6 2w2C12 2w2D52,14 2w2C2

6 2w3D24,9
C8 4D28,10 2D32,10 T6,4 2C4D24,8 T6,6






,

(6.3a)

uT =
(

1,4C2,2C2,4D3,3,2C
2
2 ,C2D2,2

)
, (6.3b)

vT
id = (0,0,0,0,0,1) . (6.3c)
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Fig. 11. (Color online) Limiting curves for triangular-lattice strips of widths L: 2 (black),
3 (red), 4 (green), 5 (blue), 6 (pink), 7 (brown), 8 (red), and 9 (green). As L increases, the
limiting curve moves towards the right. We have also depicted our estimate for the L→ ∞
limiting curve in the interval −0.23 ∼< Imw∼< 0.23 (black dots) and our very rough estimate
beyond this (black dotted-dashed curve).

where we have used the shorthand notations (5.5a)/(5.5b) and

T2,4(w) = (8w+1)(27w+2), (6.4a)

T4,2(w) = 28w+5, (6.4b)

T4,4(w) = 80w2 +28w+3, (6.4c)

T4,5(w) = (6w+1)(16w+3), (6.4d)

T4,6(w) = w2(96w3 +54w2 +12w+1), (6.4e)

T6,4(w) = 4(80w3 +47w2 +11w+1), (6.4f )

T6,6(w) = 192w4 +164w3 +62w2 +12w+1. (6.4g)

The zeros of the polynomials F4P×nF(w) with n = 20,40 are dis-
played in Fig. 8(c), along with the limiting curve B. The curve B has
three connected components separated by two very small gaps. One of
the components is the union of a horizontal segment running from w0− ≈
−0.1846154722 to w0+ =−0.1833753245 and an arc running between the



1208 Jacobsen et al.

T
a

b
le

V
I.

C
h

a
ra

c
te

ri
s
ti

c
s

o
f

th
e

L
im

it
in

g
C

u
rv

e
s

fo
r

T
ri

a
n

g
u

la
r-

L
a

tt
ic

e
S

tr
ip

s
w

it
h

C
y

li
n

d
ri

c
a

l
B

o
u

n
d

a
ry

C
o

n
d

it
io

n
s

L
#

C
#

E
#

Q
w

0−
(L
)

w
0Q
(L
)

w
0+
(L
)

w
B
(L
)

2
1

4
1

−0
.2

50
00

00
00

0
−0
.2

25
19

72
44

8
−0
.2

01
77

82
92

8
−0
.1

17
86

08
53

6
±

0.
25

20
81

92
23
i

3
3

6
0

−0
.1

92
11

27
63

7
−0
.0

10
08

33
90

5
±

0.
28

49
35

38
92
i

4
3

8
1

−0
.1

84
61

54
72

2
−0
.1

83
99

45
02

6
−0
.1

83
37

53
24

5
0.

05
88

72
69

34
±

0.
30

24
95

37
98
i

5
5

10
0

−0
.1

80
58

63
92

0
0.

11
10

08
57

84
±

0.
31

42
26

19
26
i

6
5

12
1

−0
.1

78
85

96
19

7
−0
.1

78
84

58
35

7
−0
.1

78
83

20
52

7
0.

15
34

51
35

21
±

0.
32

27
71

95
69
i

7
7†

14
†

0†
−0
.1

77
83

68
69

1
0.

18
94

30
85

55
±

0.
32

93
18

54
97
i

8
7†

16
†

1†
−0
.1

77
20

35
68

1
−0
.1

77
20

11
94

1
−0
.1

77
19

88
20

2
0.

22
07

30
82

75
±

0.
33

45
15

68
21
i

9
9†

18
†

0†
−0
.1

76
77

53
50

1
0.

24
84

62
34

16
±

0.
33

87
56

39
98
i

10
9†

20
†

1†
−0
.1

76
47

69
38

4
−0
.1

76
47

64
07

3
−0
.1

76
47

58
76

2
0.

27
33

73
13

81
±

0.
34

22
93

60
97
i

F
or

ea
ch

w
id

th
L

,
w

e
sh

ow
th

e
nu

m
be

r
of

co
nn

ec
te

d
pa

rt
s

(#
C

),
th

e
nu

m
be

r
of

en
dp

oi
nt

s
(#

E
),

th
e

nu
m

be
r

of
m

ul
ti

pl
e

po
in

ts
(#

Q
),

an
d

th
e
w

0
va

lu
es

de
fin

ed
in

th
e

te
xt

.
T

he
nu

m
be

rs
m

ar
ke

d
w

it
h

a
†

ar
e

on
ly

lo
w

er
bo

un
ds

on
th

e
ex

ac
t

va
lu

es
.



Spanning Forests and the q-State Potts Model 1209

complex-conjugate endpoints w ≈ −0.1343195918 ± 0.1422271304 i. The
segment and the arc cross at the multiple point at w0Q≈−0.1839945026.
The other two components are complex-conjugate arcs running from w≈
−0.1325113192±0.1408071373 i to wB ≈0.0588726934±0.3024953798 i.

6.4. L=5,6,7,8,9,10

The transfer matrices for L�5 are too lengthy to be quoted here. Those
for L� 9 can be found in the Mathematica file forests tri 2-9P.m
that is available with the electronic version of this paper in the cond-mat
archive at arXiv.org. The file for L=10, which is 31.9 MB long, can be
obtained on request from the authors.

We have plotted for each L (= 5,6,7,8) the zeros of FLP×(ρL)F(w) for
aspect ratios ρ=5,10 as well as the limiting curves B (ρ=∞). See Fig. 8(d)
for L=5, Fig. 9(a) for L=6, Fig. 9(b) for L=7, and Fig. 9(c) for L=8.

The principal features of the limiting curves B are summarized in
Table VI. For L= 5, there are 10 endpoints located at w≈−0.1732373428 ±
0.0559213543 i, −0.1725608663 ± 0.0557343311 i, −0.1046922573 ±
0.1666741778 i, −0.1043151240 ± 0.1662893120 i, and 0.1110085784 ±
0.3142261926 i (the latter is wB ). The limiting curve crosses the real axis at
w0Q≈−0.1805863920.

For L = 6 there is a multiple point at w0Q ≈ −0.1788458357. This
point belongs to a very short horizontal segment running from w0− ≈
−0.1788596197 to w0+ ≈ −0.1788320527. There are 10 more endpoints
at w ≈ −0.1572400315 ± 0.0919540390 i, −0.1570191889 ± 0.0918929205 i,
−0.0812379488 ± 0.1829264297 i, −0.0813151207 ± 0.1830202393 i, and
0.1534513521±0.3227719569 i (the latter is wB ).

For L= 7 there are 14 endpoints located at −0.173950 ± 0.039380 i,
−0.173885 ± 0.039369 i, −0.141195 ± 0.117208 i, −0.141154 ± 0.117209 i,
−0.061954 ± 0.194837 i, −0.061949 ± 0.194832 i, and 0.1894308555 ±
0.3293185497 i (the latter is wB ). The limiting curve crosses the real axis
at w0Q≈−0.1778368691.

For L = 8 there is a multiple point at w0Q ≈ −0.1772011941. This
point belongs to a very short horizontal segment running from w0− ≈
−0.1772035681 to w0+ ≈ −0.1771988202. There are 14 additional end-
points at −0.165087 ± 0.068518 i, −0.165105 ± 0.068521 i, −0.126193 ±
0.135891 i, −0.126182 ± 0.135887 i, −0.045467 ± 0.203914 i, −0.045470 ±
0.203918 i, 0.2207308275±0.3345156821 i (the latter is wB ).

For L = 9 we were unable to compute the full limiting curve B,
but as in the square-lattice case, we were able to obtain a rough esti-
mate by computing the points corresponding at fixed values of | Imw| =
0,0.01,0.02, etc. In particular, the point where B crosses the real axis
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is w0Q≈−0.1767753501. We have also computed the rightmost endpoints
wB ≈ 0.2484623416 ± 0.3387563998 i. Using the same method as in the
square-lattice case, we have concluded that B is formed by at least 9 con-
nected components and contains at least 18 endpoints (see Table VI).

For L= 10, we have computed the points of the limiting curve cor-
responding to | Imw| = 0,0.01,0.2, etc. by using the arpack subroutines.
We find a multiple point at w0Q ≈ −0.1764764073. This point belongs
to the horizontal segment running from w0− ≈ −0.1764769384 to w0+ ≈
−0.1764758762. Using the same method as for L=9, we conclude that the
limiting curve is formed by at least 9 connected components and contains
at least 20 endpoints. Finally, we have computed the rightmost endpoints
wB ≈0.2733731381±0.3422936097 i.

7. EXTRAPOLATION TO INFINITE WIDTH

In this section we analyze the finite-strip data from Sections 5 and 6
and study the limiting behavior as the strip width L tends to infinity. Our
goal is to determine the nature of the phase transition at w=w0 and to
extract numerical estimates of the critical point w0, the free energy f (w),
the central charge c(w), and the thermal scaling dimensions xT,i(w) for
each of the two lattices.

7.1. Procedure I: Estimates of Critical Points

One goal of this paper is to obtain the limiting value as L→∞ of the
quantities w0+(L), w0−(L) and w0Q(L). We expect that all three quantities
converge to the same limit w0:

w0 = lim
L→∞

w0j (L) for j =+,−,Q . (7.1)

This limit is also expected to be independent of the choice of boundary
conditions (e.g. free, cylindrical, cyclic, toroidal, etc.). We have estimated
w0 by fitting our finite-width data to the Ansatz

w0j (L) = w0 +AjL−� . (7.2)

At least for the square lattice, this Ansatz is theoretically justified due to
the vicinity of the critical theory at w0 =1/4, and we should have �=1/ν.
Thus, for each value Lmin we fit the data for the triplet L=Lmin,Lmin +
2,Lmin + 4 to the Ansatz (7.2) and extract the estimates of w0, Aj and
�. (For j =Q we can also use the triplets L=Lmin,Lmin + 1,Lmin + 2.)
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The observed variations in the estimates as a function of Lmin arise from
higher-order correction-to-scaling terms that are neglected in (7.2).

It is also of interest to estimate the exponent ω associated to the
width of the interval [w0−,w0+] for even L:

w0+(L)−w0−(L) ≈ AL−ω . (7.3)

We fit to the Ansatz (7.3) using pairs L=Lmin,Lmin +2.
By definition, the endpoints w0±(L) correspond, at any given finite

L, to the collision (in modulus) of the two dominant eigenvalues. Now,
for even widths L on the square lattice, we have found that w0+(L)= 1/4
exactly. Therefore, at w =w0 = −1/4 we have ξ−1

1 (L)= 0 exactly for all
even L (and not merely in the limit L→∞). From (2.37) we can conclude
that the leading thermal scaling dimension xT,1 is zero, and hence that
ν=1/2. We expect this latter conclusion to hold (by universality) also for
the triangular lattice. In view of this prediction, we can expect to obtain
more accurate estimates for w0 by fixing � in the Ansatz (7.2) to its pre-
dicted value �=1/ν=2.

More generally, we have also tried to extrapolate the whole limiting
curve B to L→ ∞: for fixed Imw = 0.01,0.02, . . . , we extrapolated the
values of Rew using an Ansatz of the form (7.2). We performed sev-
eral different extrapolations, e.g. including all data points or including
only even or odd widths. We obtained consistent estimates for | Imw| ∼<
0.33 on the square lattice and | Imw|∼< 0.23 on the triangular lattice (see
Table VII). The results are given by the black dots of Figs. 7 and 11.

By the same method we can obtain the limit as L→ ∞ of the end-
points with largest real part, which we have denoted wB(L). As a first
guess, we used the Ansatz

wB(L) = wB +AL−� (7.4)

separately for the real and imaginary parts of wB(L). Then, after exam-
ining the results, we conjectured better Ansätze (see Sections 7.3 and 7.7
below).

7.2. Procedure II: Estimates of the Free Energy

The second goal of this paper is to estimate the bulk free energy

f (w) = lim
L→∞

fL(w) (7.5)
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Table VII. Extrapolated limiting curve B for the square

and triangular lattices

Square lattice Triangular lattice

Imw Rew Rew

0 −0.2501±0.0001 −0.1753±0.0004
0.01 −0.2512±0.0012 −0.1751±0.0001
0.02 −0.2531±0.0006 −0.1743±0.0001
0.03 −0.2531±0.0010 −0.1730±0.0001
0.04 −0.2537±0.0005 −0.1712±0.0001
0.05 −0.2539±0.0005 −0.1688±0.0001
0.06 −0.2535±0.0005 −0.1659±0.0001
0.07 −0.2526±0.0006 −0.1624±0.0001
0.08 −0.2512±0.0002 −0.1584±0.0001
0.09 −0.2493±0.0011 −0.1537±0.0001
0.10 −0.2469±0.0009 −0.1483±0.0001
0.11 −0.2441±0.0007 −0.1423±0.0001
0.12 −0.2409±0.0010 −0.1355±0.0001
0.13 −0.2374±0.0012 −0.1279±0.0001
0.14 −0.2331±0.0025 −0.1193±0.0001
0.15 −0.2305±0.0018 −0.1099±0.0001
0.16 −0.2258±0.0015 −0.0994±0.0001
0.17 −0.2207±0.0010 −0.0877±0.0002
0.18 −0.2153±0.0009 −0.0748±0.0006
0.19 −0.2095±0.0006 −0.0599±0.0004
0.20 −0.2033±0.0011 −0.0429±0.0021
0.21 −0.1968±0.0006 −0.0257±0.0025
0.22 −0.1895±0.0005 −0.0073±0.0030
0.23 −0.1819±0.0003 0.0198±0.0060
0.24 −0.1736±0.0001
0.25 −0.1646±0.0001
0.26 −0.1550±0.0002
0.27 −0.1447±0.0002
0.28 −0.1337±0.0003
0.29 −0.1220±0.0002
0.30 −0.1094±0.0005
0.31 −0.0969±0.0015
0.32 −0.0820±0.0017
0.33 −0.0674±0.0010

For each lattice and each fixed value of Imw, we show the extrapo-
lated value of Rew together with its subjective error bar.

and its derivatives as a function of w. For each of the two lattices (square
and triangular), we have computed the five largest eigenvalues (in modu-
lus) of the transfer matrix T(w) for selected real values of w and for all
L�14. The w values are taken between w=−2 and w=2 in steps of 0.1.
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From the dominant eigenvalue λ�(w) we can extract the strip free energy

fL(w) = 1
L

logλ�(w) (7.6)

[cf. (2.32)]. In Figs. 12 and 21 (see below) we have plotted the real part of
the strip free energy,

RefL(w) = 1
L

log |λ�(w)| , (7.7)

for the square and triangular lattices, respectively. The imaginary part of
the free energy, not shown in the plot, arises from the following qualita-
tive properties of the eigenvalues:

(a) For odd L:
– For w>w0Q, there is a unique dominant eigenvalue λ�(w), which

is real and positive.
– At w =w0Q, the dominant eigenvalue λ�(w) > 0 becomes equi-

modular with an eigenvalue −λ�(w)<0.
– For w<w0Q, there is a unique dominant eigenvalue λ�(w), which

is real and negative.
(b) For even L:

– For w>w0+, there is a unique dominant eigenvalue λ�(w), which
is real and positive.

– At w =w0+, the two leading eigenvalues collide. The common
value λ�(w) is still real and positive.

– For w0−<w<w0+, there is a complex-conjugate pair of domi-
nant eigenvalues.

– At w=w0−, the two leading eigenvalues again collide. The com-
mon value λ�(w) is real and positive.

– For w<w0−, there is a unique dominant eigenvalue λ�(w), which
is real and positive.

The only exception to the above pattern (at least for L�8) is the square-
lattice strip with L=4 at w=w0− (see Fig. 4). In this case, the point w0−
happens to be a T point, not a regular endpoint. At w0−, three eigen-
values attain the same modulus: one is real and positive, while the other
two form a complex-conjugate pair.

The limit L → ∞ of the finite-width free energy fL(w) can be
extracted by using the Ansatz (2.34) or (2.33), depending on whether the
model is critical or not. As we do not know a priori to which regime a
given value of w belongs (this is especially true for the triangular-lattice
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model, for which we do not know the exact value of w0), we can try first
the preliminary Ansatz

fL(w) = f (w) + A(w)L−�(w) . (7.8)

We fit to triplets L= Lmin,Lmin + 2,Lmin + 4 in order to minimize the
effects of even-odd oscillations. The variations of the estimates for f (w),
A(w) and �(w) as a function of Lmin will give us an idea about the
critical or noncritical nature of the model. If the model is critical, we
expect that the estimates for �(w) will converge to 2 as Lmin →∞; if the
model is noncritical, we expect that the estimates for �(w) will grow with-
out bound. Once we determine the regime to which a given value of w
belongs, we can use the more appropriate Ansatz (2.34) or (2.33) to obtain
more accurate estimates of the physical parameters, notably the central
charge c(w) for the critical models.

Finally, by studying the L-dependence of the gap between the dom-
inant eigenvalue λ�(w) and the subdominant eigenvalues λi(w), we can
estimate the thermal scaling dimensions xT,i using the Ansatz (2.37).

7.3. Square Lattice: Estimates of Critical Points and Phase

Boundary

The square-lattice data that we wish to extrapolate are collected in
Table V and depicted graphically in Fig. 7. The quantities w0−(L) and
w0+(L) are defined only for even L. The quantity w0Q(L) is defined for
all L, but it exhibits such strong even-odd oscillations that it makes sense
to fit it separately for odd and even L. We therefore perform the fits to the
Ansatz (7.2) using L=Lmin,Lmin +2,Lmin +4. The results are displayed in
Table VIII. The estimates of w0 are well converged, and from Lmin = 5,6
we can estimate

w0(sq) = −0.2501±0.0002 . (7.9)

This result agrees very well with the theoretical prediction (1.11):

w0(sq) = −1/4 . (7.10)

It is also noteworthy that for all even values of L�10, we have found that
w0+(L)=−1/4 exactly. Therefore, the exponent ω defined by (7.3) is iden-
tical to the exponent � extracted from w0−(L).
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The exponent � in Table VIII seems to be approaching �= 1/ν≈ 2
(at least roughly). This behavior is consistent with the interpretation that
at w=w0 there is a first-order phase transition (see Section 7.4 for over-
whelming evidence that the first derivative of the free energy is in fact dis-
continuous at w =w0): such a phase transition can be described in the
renormalization-group framework by a discontinuity fixed point character-
ized by ν= 1/d, where d is the dimensionality of the lattice (d= 2 in our
case).(94,147) The behavior �= 2 is also consistent with an ordinary crit-
ical point having xT = 0 (see Section 7.6 for an analysis of the correla-
tion length in this model). Note, finally, that the only possible values of
� consistent with conventional finite-size-scaling theory are �� d (corre-
sponding to a critical point or a first-order transition) and �= ∞ (cor-
responding to a noncritical point). Estimates of � that are slightly larger
than 2 but decreasing with L (or, at any rate, not strongly increasing with
L) therefore suggest that �=2.

Numerical investigations of first-order phase transitions (ref. 148 and
references therein) suggest that the higher-order corrections to the L−d
behavior are simply integer powers of L−d . This observation motivates the
Ansatz

w0j (L) = w0 +A2L
−2 +A4L

−4 . (7.11)

Table VIII. Fits for w0 on the Square Lattice, using the

Ansatz w0j (L)=w0 +AL−�(j =+,−,Q)

O Lmin w0 A �

w0− 2 −0.255549 −2.706839 3.468990
4 −0.249990 −0.651261 2.279345
6 −0.250067 −0.673708 2.302190

w0Q 2 −0.251626 −0.851180 2.895388
3 −0.250375 −0.420673 2.225741
4 −0.250280 −0.525761 2.487308
5 −0.250102 −0.381902 2.151375
6 −0.250099 −0.450073 2.384256

w0+ 2 −0.250000
4 −0.250000
6 −0.250000

Each fit is based on data points with L=Lmin,Lmin +2,Lmin +4.
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Table IX. Fits for w0 on the square lattice, using the

Ansatz w0j (L)=w0 +A2L
−2 +A4L

−4(j =+,−,Q)

O Lmin w0 A2 A4

w0− 2 −0.253138 −0.193231 −3.176863
4 −0.249328 −0.391380 −0.981983
6 −0.249706 −0.353564 −1.853270

w0Q 2 −0.249617 −0.215651 −0.999924
3 −0.249785 −0.292447 −0.370198
4 −0.249712 −0.210752 −1.054185
5 −0.249899 −0.284036 −0.509425
6 −0.249852 −0.196667 −1.378714

w0+ 2 −0.250000
4 −0.250000
6 −0.250000

Each fit is based on data points with L=Lmin,Lmin +2,Lmin +4.
The results of fitting the data to this Ansatz are shown in Table IX. In
this table we observe that the estimates for w0(sq) converge slightly faster
to values close to the exact result than do the estimates in Table VIII (at
least for small L).

Let us next extrapolate the endpoints wB(L), handling separately their
real and imaginary parts. The real part of wB(L) seems to diverge as L→
∞: indeed, as we increase Lmin, the estimate for RewB using the Ansatz
(7.4) appears to grow without bound (e.g., wB ≈ 1.19 for Lmin = 2, wB ≈
2.75 for Lmin =3, and wB ≈9.18 for Lmin =4). We therefore tried to guess
the behavior of RewB(L) as a function of L, and found that it fits very
closely to the Ansatz

RewB(L) = c1 logL + c2 . (7.12)

The estimates for c1 and c2 as a function of Lmin are shown in Table X(a).
For Lmin � 5, the estimate of c1 is clearly rising with Lmin and is not yet
slowing down. This suggests that the true value of c1 is quite a bit larger
than the value ≈ 0.405 observed at our largest Lmin; how much larger is
difficult to say, especially since it is very difficult to fit a slowly-varying
function (such as logL) with data points in the (extremely narrow) interval
2�L�10. One expects, in any case, that the true c1 may exceed the value
≈0.405 by an amount considerably larger than the observed variations in
Table X(a). If forced to guess, we might estimate
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Table X. Fits for wB on the square lattice

(a) RewB(L)= c1 logL+ c2 RewB(L)= c1 logL+ c3 log logL+ c2

Lmin c1 c2 c2

2 0.474901 −0.579176 −0.639286
3 0.419712 −0.518546 −0.567025
4 0.403625 −0.496244 −0.546622
5 0.400000 −0.490410 −0.539345
6 0.400170 −0.490715 −0.536389
7 0.401532 −0.493364 −0.535168
8 0.403227 −0.496888 −0.534745
9 0.404949 −0.500673 −0.534720

10 −0.534906

(b) ImwB(L)= ImwB +AL−� ImwB(L)= ImwB +AL−1/2

Lmin ImwB A � ImwB A

2 0.748618 −0.417404 0.403321 0.692477 −0.366938
3 0.759610 −0.426574 0.386512 0.699761 −0.379554
4 0.728743 −0.404746 0.443835 0.705369 −0.390771
5 0.708533 −0.395674 0.496601 0.707377 −0.395260
6 0.697576 −0.394585 0.534017 0.707470 −0.395487
7 0.691678 −0.396335 0.558477 0.706739 −0.393553
8 0.688422 −0.398635 0.574048 0.705719 −0.390668
9 0.704646 −0.387450

(Panel a) For the real part, we use the Ansätze RewB(L)= c1 logL+ c2 with c1 and
c2 free, and RewB(L)=c1 logL+c3 log logL+ c2 with fixed c1 =3/(2π) and c3 =−1/(2π)
[see (7.14) and surrounding text]. (Panel b) For the imaginary part, we first use
ImwB(L)= ImwB +AL−�, and then we perform the fit with �=1/2. Two-parameter fits
are based on data points with L=Lmin,Lmin + 1; three-parameter fits are based on data
points with L=Lmin,Lmin +1,Lmin +2.

c1 = 0.41±0.03, (7.13a)

c2 = −0.52±0.06 (7.13b)

but these estimates should be taken with a grain of salt!
A more precise Ansatz can be tried if we recall the recently-discov-

ered relationship(24) of this model with the N -vector model with N = −1
and a sign change in the coupling constant. This relation implies that the
spanning-forest model is perturbatively asymptotically free, and yields the
theoretical prediction
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RewB(L) = c1 logL + c3 log logL + c2 + O

(
log logL

logL

)
(7.14)

with c1 = 3/(2π)≈ 0.477465 and c3 =−1/(2π)≈−0.159155.(24)34 The esti-
mates obtained by performing a one-parameter fit to (7.14) with c1 and c3
fixed to their theoretical values (and the correction term O(log logL/ logL)
neglected) are displayed in the last column of Table X(a). From these values
we can estimate that

c2 = −0.535±0.005. (7.15)

Please note, however, that the correction terms omitted in (7.14)—log logL/
logL, 1/ logL and so forth—are extremely slowly varying functions of L.
Hence, as we have access only to a very narrow range of L values, we cannot
rule out the possibility that the actual value of c2 may differ from the above
estimate by many times our estimated error.

The imaginary part of wB(L), by contrast, seems to converge to
a finite limit: the estimates using the Ansatz (7.4) are displayed in
Table X(b). We conclude that ImwB = 0.69 ± 0.03 and �≈ 1/2. Guessing
that �= 1/2 exactly, we can refine the estimate for ImwB by fitting the
data to the Ansatz

ImwB(L) = ImwB + AL−1/2. (7.16)

The results are displayed in Table X(b). The estimate for ImwB(sq) is still
decreasing with Lmin, and our best estimate is

ImwB(sq) = 0.70±0.02 . (7.17)

Finally, let us try to extrapolate the limiting curve B to L→∞; the
result is a curve B∞ that can be interpreted as the phase boundary in
the complex w-plane. We began by extrapolating Rew at the selected val-
ues Imw= 0.01,0.02, . . . , using the Ansatz (7.4) for Rew. We performed
several different extrapolations, e.g. including all data points or including
only even or odd widths. We obtained consistent estimates for | Imw| ∼<
0.33 (see Table VII). The results are given by the black dots of Fig. 7.

34Indeed, it was our numerical observation of the behavior (7.12) that led us to conjecture
that the spanning-forest model is asymptotically free in two dimensions—a conjecture that
played an important role in catalyzing the work reported in ref. 24.
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Next we attempted to complete this curve at larger Rew. The behav-
iors (7.12)–(7.15) and (7.16)–(7.17) suggest that the curve B∞ contin-
ues all the way to Rew= +∞, asymptotically approaching Imw≈ ±0.70
as Rew→ +∞. This behavior is in agreement with the theoretical pre-
diction arising from renormalization-group computations in the four-
fermion model describing spanning forests at small g ≡ 1/w.(24) These
computations show(24) that the fixed point at g = 0 (a free fermion the-
ory) is marginally repulsive for g > 0 (i.e., perturbatively asymptotically
free) and marginally attractive for g<0, with a renormalization-group flow
given by

dg

dl
= b2g

2 + b3g
3 + b4g

4 + b5g
5 + · · · (7.18)

or equivalently

dw

dl
= −b2 − b3

w
− b4

w2
− b3

w3
− · · · (7.19)

with b2 > 0, where l is the logarithm of the length rescaling factor. The
phase boundary B∞ is a special RG flow curve: namely, it is a separa-
trix that divides the complex w-plane into two “phases”. Initial conditions
belonging to the “phase” containing w = 0 are attracted to the “high-
temperature” fixed point at w = 0 and are therefore noncritical. Initial
conditions belonging to the “phase” containing w= −∞ are attracted to
the free-fermion fixed point at Rew = −∞ and are thus critical. From
(7.19) we see that all the RG flow curves (not only the separatrix) tend
to a constant value Imw as Rew→ +∞. It is a nonperturbative ques-
tion to determine which one of these RG flow curves is the separatrix. But
our transfer-matrix calculations yield an approximate answer to that ques-
tion—namely, Imw≈±0.70—which we can combine with the perturbative
calculations to estimate the shape of the curve B∞ at large Rew. To do
this, let us write w=α+ iβ, substitute into (7.19), separate real and imag-
inary parts, and divide to obtain a differential equation for the unpara-
metrized flow curves:

dβ

dα
=

b3
β

α2+β2 + b4
2αβ

(α2+β2)2
+ b5

3α2β−β3

(α2+β2)3
+ · · ·

−b2 − b3
α

α2+β2 − b4
α2−β2

(α2+β2)2
− b5

α3−3αβ2

(α2+β2)3
− · · ·

(7.20)

Plugging into (7.20) the Ansatz

β = β0

[
1 + A1

α
+ A2

α2
+ A3

α3
+ · · ·

]
, (7.21)



1220 Jacobsen et al.

we obtain

A1 = b3/b2, (7.22a)

A2 = b4/b2, (7.22b)

A3 = b5/b2 − β2
0b3/(3b2). (7.22c)

Finally, we need to determine the RG coefficients b2, b3, . . . . This can
be done by applying the recently-discovered mapping(24) of the spanning-
forest model onto the N -vector model with N =−1 and a sign change in
the coupling constant (i.e., wforests =−βN−vector). Using the known coeffi-
cients of the N -vector RG beta function through four loops,(149–151) we
obtain

b2 = −w0

∣∣
N=−1 = 3/(2π), (7.23a)

b3 = w1

∣∣
N=−1 = −3/(2π)2, (7.23b)

b4 = −wlatt
2

∣∣∣
N=−1

≈ 2.34278457/(2π)3, (7.23c)

b5 = wlatt
3

∣∣∣
N=−1

≈ 1.43677/(2π)4 (7.23d)

and hence

A1 = −1/(2π), (7.24a)

A2 ≈ 0.78092819/(2π)2, (7.24b)

A3 ≈ 6.92706/(2π)3 if β0 =0.7. (7.24c)

For numerical purposes, we found it convenient to use the variant
Ansatz

β = β0 exp
[

B1

α−α0
+ B2

(α−α0)
2

+ B3

(α−α0)
3

+ B4

(α−α0)
4

+ · · ·
]
.

(7.25)

If we impose B3 =B4 =0 and fit to the theoretical prediction (7.24) of the
first three derivatives at α=∞, we obtain α0 =−0.479224, B1 =−1/(2π),
B2 =−0.069155; the resulting fit (7.25) evaluated at α=−0.0674 has value
0.316354 and derivative 0.923329, compared to the correct value 0.33 and
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derivative 0.6849 deduced from Table VII. This is quite good agreement
between extrapolated perturbation theory and our nonperturbative esti-
mates. We therefore used the Ansatz (7.25), imposing the first three deriv-
atives at α = ∞ along with the estimated value and derivative at α =
−0.0674; we obtain

α0 = −1.06145, (7.26a)

B1 = −1/(2π) ≈ −0.159155, (7.26b)

B2 = −0.161818, (7.26c)

B3 = −0.134478, (7.26d)

B4 = −0.284334. (7.26e)

The corresponding curve (7.25) is depicted as a black dotted-dashed curve
in Figure 7. This curve is presumably not quite right, because it inter-
sects the L=10 curve, whereas the monotonicity of the finite-L curves sug-
gests that the curve B∞ lies to the right of all of them. Therefore, the true
curve B∞ probably lies slightly to the right of the dotted-dashed curve in
Figure 7. Nevertheless, we suspect that this latter curve is a fairly good
approximation to the true curve B∞, especially at large positive Rew.

7.4. Square Lattice: Behavior of the Free Energy and its

Derivatives as w →w0

We have computed the real part of the strip free energy, RefL(w)=
(1/L) log |λ�(w)|, for widths 2�L�14 and w=−2,−1.9, . . . ,1.9,2 as well
as w=−1/4. These results are plotted in Figure 12. We have extrapolated
these values to L=∞ (solid black line) using the Ansatz

RefL(w) = Ref (w) + A(w)L−�(w) . (7.27)

We show also the [20,20] Padé approximant to the small-w series for this
quantity (dashed violet curve), and the large-w series (3.20) through order
w−1 (dot-dashed pink curves). It is interesting to note that the small-w
series agrees very well with the free-energy data in the regime for w >
w0(sq)=−1/4 (in fact, the two curves lie one over the other, at least out
to w= 2); but it says nothing whatsoever about the behavior for w<w0.
On the other hand, the large-w series agrees well with the free energy for
|w| ∼> 1, for both signs of w; indeed, it gives a fairly good description of
the whole regime −∞<w∼<w0, except very close to the transition point.

The real part of the free energy clearly has a minimum at w=−1/4.
From the plot it appears that the free energy is continuous at w=−1/4,
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Fig. 12. (Color online) Real part of the free energy for square-lattice spanning forests as
a function of w, for strips of width L = 2 (•), 3 (�), 4 (�), 5 (�), 6 (◦), 7 (�), 8 (�),
9 (♦), 10 (×), 11 (+), 12 (∗), 13 (⊕) and 14 (�). To make clearer any even-odd effect we
have displayed in red (resp. blue) the points corresponding to even (resp. odd) L. The black
solid curve is obtained by extrapolating the finite-width data to L→∞ and then joining the
points. The violet dashed line is the Padé [20,20] approximant to our longest small-w series.
Finally, the pink dot-dashed curve corresponds to the large-w expansion (3.20) through order
w−1.

while its derivative with respect to w (the “internal energy”) has a jump
discontinuity there. To verify this latter point, we computed the deriva-
tive of the free energy with respect to w at the same list of values of w,
for widths L� 10, by numerical differentiation.35 The results are shown
in Fig. 13. In this figure we have also shown the [20,20] Padé approx-
imant to the small-w series for the internal energy f ′(w) [dashed violet
curve] and the first derivative of the large-w series (3.20), namely f ′(w)=
1/w−1/(8w2) [dot-dashed pink curves].

It is clear that f ′(w) has a jump discontinuity at w=w0 =−1/4: when
w↑w0 it decreases towards a negative limit, and when w↓w0 it increases

35For L�9 we have done this computation using Mathematica with high-precision arithme-
tic (200 digits). For L=10 we have used the arpack package (146) with double precision. In
the former case we have used the three-point interpolation formulas for central differentia-
tion (152) with mesh width �w= 0.5 × 10−20 (resp. �w= 10−20) for the first (resp. second)
derivative of the free energy. In the latter case, we have used seven-point interpolation for-
mulas with mesh widths �w=0.5×10−3 and �w=10−3, respectively. This is enough to get
results with at least nine-digit precision.
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Fig. 13. (Color online) First derivative f ′
L(w) of the square-lattice free energy for strips of

width L= 2(•), 3 (�), 4 (�), 5 (�), 6 (◦), 7 (�), 8 (�), 9 (♦) and 10 (×). Points with even
(resp. odd) L are shown in red (resp. blue). The violet dashed curve on the right corresponds
to the Padé approximant [20,20] to our longest small-w series. The pink dot-dashed curve cor-
responds to the derivative of the large-w expansion (3.20), through order w−2. The vertical
brown dot-dot-dashed line marks the point w0 =−1/4.

towards a positive limit. What is less clear from Fig. 13 is whether these
limiting values are finite or infinite. In order to address this question, we
have plotted in Fig. 14(a) a blow-up of the region very near w =w0 =
−1/4, showing f ′

L(w) together with the same small-w and large-w curves
as in Figure 13. The curves f ′

L(w) show a clear parity effect due to the
existence for even L of the interval [w0−,w0+] where the two dominant ei-
genvalues form a complex-conjugate pair, and due to the existence for odd
L of the point w0Q where the two dominant eigenvalues cross in modulus.
More precisely, for even L the free energy has square-root branch points
at w=w0±(L), so that f ′

L(w) diverges to ±∞ at those two points, at a
rate ∼ |w−w0±(L)|−1/2. These divergences are seen clearly in Fig. 14(a)
(note that w0+(L)=−1/4 for all L, while w0−(L) for L=6,8,10 is marked
with a brown dot-dot-dashed vertical line). For odd L, by contrast, the
free energy switches at w =w0Q(L) between two distinct eigenvalues, so
that f ′

L(w) has a jump discontinuity there. This discontinuity is also seen
clearly in Fig. 14(a).

We now wish to infer from Fig. 14(a) the infinite-volume behavior of
of the internal energy f ′(w) in the two regimes w>w0 and w<w0. To
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Fig. 14. (Color online) First derivative f ′
L(w) of the square-lattice free energy for strips of

widths 2 � L� 10 close to w0(sq)= −1/4. (a) Curves for even (resp. odd) L are shown in
red (resp. blue). The violet dashed curve on the right corresponds to the Padé approximant
[20,20] to our longest small-w series. The pink dot-dashed curve corresponds to the deriva-
tive of the large-w expansion (3.20), through order w−2. The vertical brown dot-dot-dashed
line marks the point w0 =−1/4. The vertical brown dot-dot-dashed lines near the bottom of
the figure mark the position of the points w0−(L) for L= 6,8,10. (b) Curves for strips of
widths L=2,4,6,8,10 are plotted vs. w−w0−(L).
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do this, we must disregard the behavior too near the points w=w0±(L),
where f ′

L(w) is dominated by the finite-L divergence, and focus instead on
extracting the limit L→ ∞ at fixed w. Fortunately, a fairly clear picture
emerges:

(1) For w>w0, f ′
L(w) is decreasing (resp. increasing) in L for even

(resp. odd) L; the two data sets seem to be converging to a common lim-
iting curve that lies very near the [20,20] Padé approximant to the small-w
series. Furthermore, this limiting curve very likely remains finite as w↓w0.
Indeed, for odd L there is not the slightest indication that f ′

L(w) could be
diverging; the data seem, rather, to indicate a limiting value around 4, and
certainly no more than 5. For even L the data are less clear, but at least
for w∼>−0.248 we see that f ′

L(w) is rapidly decreasing with L and appar-
ently approaching a limiting value close to the Padé-approximant curve;
furthermore, this convergence is rapid when w is well above w0 and less
rapid when w is nearer to w0. It is therefore reasonable to expect that a
similar convergence occurs for all w>w0, but which for w very near w0
requires very large L to be seen definitively. We would guess a limiting
value f ′+(w0)≡ limw↓w0 f

′(w) in the range 4–5. However, it is at least con-
ceivable that the infinite-volume internal energy f ′(w) is weakly divergent
as w↓w0, e.g. like f ′(w)∼ log(w−w0) or f ′(w)∼ log log(w−w0).

(2) For w < w0 the behavior is even clearer: both the odd-L and
even-L curves stay close to each other (at a value ≈−4.7) until they peel
away due to the discontinuity at w = w0Q(L) for odd L or due to the
proximity of the divergence at w=w0−(L) for even L; furthermore, these
“peel away” points get closer to w0 as L grows. This strongly suggests that
a similar convergence occurs for all w<w0. Finally, the apparent limit-
ing value ≈ −4.7 is not far from the curve corresponding to the large-w
expansion (namely, about 20% above it). Once again, there is no evidence
that f ′(w) could be diverging as w↑w0. Rather, the data for both odd and
even L suggest a limiting value f ′−(w0)≡ limw↑w0 f

′(w)≈−4.7.
Since w0−(L) varies with L, it is useful to plot f ′

L(w) versus w −
w0−(L) in order to compare the behavior at “comparable” values of w.
Such a plot is shown in Fig. 14(b). We see clearly that the region of diver-
gence grows narrower as L grows. In particular, at any fixed value of
w−w0−(L)< 0, f ′

L(w) appears to tend to a limiting value around −4.7:
this is seen clearly for w −w0−(L)∼<−0.003, and would presumably be
seen also for smaller |w − w0−(L)| if we were to go to larger L. This
plot confirms, from a slightly different point of view, our conclusion that
f ′−(w0)≡ limw↑w0 f

′(w)≈−4.7.
In summary, there is strong evidence that the infinite-volume internal

energy f ′(w) tends to a finite value as w ↑w0. The evidence is less clear
concerning the behavior as w ↓w0, but the most likely scenario is also a
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finite limit, with weak divergences also possible. In any case, the existence
of a discontinuity—whether finite or infinite—in the first derivative of the
free energy is a clear signal of a first-order phase transition at w0.

We can also compute the second derivative of the free energy with
respect to w (i.e., the analogue of the specific heat in the usual Potts
model), again by numerical differentiation. The results are shown in
Fig. 15, along with the [20,20] Padé approximant for the corresponding
small-w series for f ′′(w) [dashed violet curve] and the second derivative
of the large-w series (3.20), namely f ′′(w)=−1/w2 +1/(4w3) [dot-dashed
pink curves]. This derivative is clearly getting large and negative as we
approach w0 from both sides, and it may well be diverging to −∞. To
check this point more carefully, we made a blow-up plot of f ′′(w) very
near w=w0, using a logarithmic vertical scale [see Fig. 16(a)]. Just as for
f ′, we find a different behavior for odd and even L. The curves f ′′

L(w) for
odd L have a jump discontinuity at w=w0Q(L). Their value at w=w0 =
−1/4 grows with L and it is not clear how these values behave in the limit
L→∞. For fixed even L, we find that f ′′

L(w) grows rapidly as w↑w0−(L)
and as w↓w0+(L)=−1/4; this rapid growth is once again explainable as

Fig. 15. (Color online) Second derivative f ′′
L(w) of the square-lattice free energy for strips

of width L = 2 (•), 3 (�), 4 (�), L = 5 (�), 6 (◦), L = 7 (�), 8 (�), L = 9 (♦), and 10
(×). Points with even (resp. odd) L are shown in red (resp. blue). The violet dashed curve
on the right corresponds to the Padé approximant [20,20] to our longest small-w series. The
pink dot-dashed curve corresponds to the second derivative of the large-w expansion (3.20),
through order w−3. The vertical dot-dot-brown dashed line marks the point w0 =−1/4.
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Fig. 16. (Color online) Second derivative f ′′
L(w) of the square-lattice free energy for strips

of widths 2 �L� 10 close to w0(sq)=−1/4. (a) Curves for even (resp. odd) L are shown in
red (resp. blue). The violet dashed curve on the right corresponds to the Padé approximant
[20,20] to our longest small-w series. The pink dot-dashed curve corresponds to the second
derivative of the large-w expansion (3.20), through order w−3. The vertical brown dot-dot-
dashed line marks the point w0 =−1/4. The vertical brown dot-dot-dashed lines near the top
of the figure mark the position of the points w0−(L) for L=6,8,10. (b) Curves for strips of
widths L=2,4,6,8,10 are plotted versus w−w0−(L).
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arising from the square-root branch points in fL(w), causing a divergence
f ′′
L(w)∼ |w−w0±(L)|−3/2. However, the magnitude of f ′′

L(w) at fixed w

is decreasing as L grows, and it is unclear how f ′′(w)= limL→∞ f ′′
L(w)

behaves. Once again, let us consider this question separately on the two
sides of w0:

(1) For w>w0, it is plausible that the finite-L curves are converging
from opposite sides (i.e., from above when L is even and from below when
L is odd) to a limiting curve f ′(w) that is close to the [20,20] Padé ap-
proximant to the small-w series (i.e., the dashed violet curve in Fig. 15).
Analysis of this Padé approximant (see below) then suggests that f ′′(w)
diverges as w↓w0, with an exponent near α≈1.

(2) For w<w0, let us plot f ′′
L(w) vs. w−w0−(L) in order to com-

pare the behavior at “comparable” values of w. Such a plot is shown in
Fig. 16(b). Careful inspection shows that the ratios of f ′′(L) for different
L— i.e., the vertical distances between curves on this logarithmic plot—
are decreasing as w↓w0. (The strange behavior for L=4 very near w0−(L)
arises from the fact that this point is not an endpoint, but rather a T
point, as shown in Fig. 4.) This suggests that the infinite-volume specific
heat f ′′(w) may diverge as w ↑w0 in a manner somewhat similar to that
shown by the L=10 curve. But the evidence is admittedly weak, and it is
fair to say that we cannot really be sure how f ′′(w) behaves as w↑w0.

Finally, further information about the behavior of f (w), f ′(w) and
f ′′(w) as w↓w0 can be obtained by analyzing the small-w series for these
quantities. This is done in detail in Appendix A; here we simply summa-
rize the results. We find that the behavior of these three quantities is con-
sistent with

f (w) ∼
(
w+ 1

4

)2−α
with α=0.94±0.10, (7.28a)

f ′(w) ∼
(
w+ 1

4

)1−α
with α=0.90±0.04, (7.28b)

f ′′(w) ∼
(
w+ 1

4

)−α
with α=0.91±0.02. (7.28c)

We thus have strong evidence that f ′′(w) diverges as w↓w0, but it is not
clear whether f ′(w) diverges there or not. Taking our estimates literally,
the corresponding critical exponent is 1−α=0.10±0.04>0, so that f ′ is
finite as w↓w0; but we cannot make a firm conclusion as the error bar is
very large! Taking into account the uncertainties of series analysis, it seems
fair to say that (7.28c) is consistent with the theoretically predicted value
α = 1, especially if we recall the possibility of multiplicative logarithmic
corrections. Note that, depending on the form of the latter corrections,
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f ′′ could be either integrable or nonintegrable at w=w0, i.e., f ′ could be
either finite or infinite there.

7.5. Square Lattice: Estimates of the Free Energy and Central

Charge

Baxter’s exact solution(28) for the Potts-model free energy on the
curve (1.3) implies the exact value

f (sq,w=−1/4) = 2 log
(
�(1/4)

4�(3/4)

)
≈ −0.6031055757 . (7.29)

In order to make a high-precision test of this prediction, we computed
the strip free energies fL(w= −1/4) for all widths L up to 15. For 2 �
L� 9 we used our symbolic transfer matrices, while for 10 �L� 15 we
used a numerical transfer-matrix algorithm. These data are reported in
Table XI. The free energies fL(w= −1/4) show strong even–odd oscilla-
tions; moreover, they appear to be monotonically increasing in L for even
L, and monotonically decreasing for odd L. If this monotonicity persists
for larger L, then from L=14,15 we can deduce the bounds

−0.6067349394 � f (sq,w=−1/4) � −0.6019335900 . (7.30)

Separate extrapolations of the even and odd subsequences using the
Ansatz (7.27) yield the results reported in Table XII. Putting them together,
we conclude that

f (sq,w=−1/4) = −0.60310±0.00010 , (7.31)

in excellent agreement with the exact result (7.29). We also find a rate
of convergence compatible with � = 2 (see below for a more detailed
analysis).

We have similarly extended up to width L=16 the data for the points
w=±1 of interest to mathematicians: see Table XI. In both cases, Ref (w)
appears to be monotonically increasing in L. If this monotonicity really
holds for all L, it would imply that

Ref (sq,w=1) � RefL=16(sq,w=1) ≈ 1.3079471010, (7.32a)

Ref (sq,w=−1) � RefL=16(sq,w=−1) ≈ 1.0432380373. (7.32b)

The lower bound (7.32a) lies between the rigorous lower and upper
bounds (2.41). Extrapolation of these sequences using the Ansatz (7.27)
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Table XI. Free energies fL(w) [cf. (2.32)] for square-lattice

strips of width L and cylindrical boundary conditions, for

w =−1,−1/4,+1

L RefL(w=−1) RefL(w=−1/4) RefL(w=1)

2 0.5493061443 −0.8369882168 1.1815331056
3 0.8549831192 −0.5707633924 1.2632940309
4 0.9464522368 −0.6562577390 1.2874485986
5 0.9856542144 −0.5922057762 1.2970413323
6 1.0059956327 −0.6249471934 1.3016030310
7 1.0178936568 −0.5976444627 1.3040407836
8 1.0254486325 −0.6148600247 1.3054521450
9 1.0305421492 −0.5998257544 1.3063180519

10 1.0341369549 −0.6104343745 1.3068731127
11 1.0367673970 −0.6009181846 1.3072413122
12 1.0387494019 −0.6081078906 1.3074923528
13 1.0402794617 −0.6015429512 1.3076673968
14 1.0414849726 −0.6067349394 1.3077917458
15 1.0424514545 −0.6019335900 1.3078814782
16 1.0432380373 1.3079471010

∞ −0.6031055757

The row labelled ∞ shows the exact value (7.29) in the thermody-
namic limit L=∞.

for triplets L = Lmin,Lmin + 1,Lmin + 2 yields the results reported in
Table XII. The convergence for w= −1 is slower (�≈ 2) than for w= 1
(�≈3.6). Our best estimates f (sq,w=±1) are

f (sq,w=1) = 1.30819±0.00010, (7.33a)

f (sq,w=−1) = 1.04870±0.00010. (7.33b)

These values are of course larger than the conjectured lower bounds
(7.32b); and the estimate for f (sq,w= 1) lies between the rigorous lower
and upper bounds (2.41).

The different values found for the correction exponent � can be
explained in the following way. For w>−1/4, we expect that the system
is governed by the high-temperature fixed point, which is noncritical. As
a consequence, we expect an exponentially rapid convergence of the strip
free energy to its infinite-volume limit. This explains why for w = 1 the
estimates of � grow with Lmin, apparently without bound. For w<−1/4,
by contrast, we expect that the system will be governed by the fixed point
located inside the Berker–Kadanoff phase,(46,47) which is critical. Confor-
mal field theory (CFT) then predicts that
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Table XII. Fits of RefL(w) on square-lattice strips to the Ansatz (7.27)

Lmin Ref (sq,w=−1/4) A(w=−1/4) �(w=−1/4)

3 −0.6026552580 0.3514454435 2.1843042660
5 −0.6029925573 0.3092573584 2.0851083253
7 −0.6030693569 0.2909915798 2.0464952763
9 −0.6030901419 0.2826853879 2.0304080199

11 −0.6030977473 0.2779994113 2.0219793544

2 −0.6018136184 −1.0158505843 2.1108840738
4 −0.6036426651 −1.1575753432 2.2297430523
6 −0.6034714802 −1.1161060082 2.2049156257
8 −0.6032861810 −1.0321405587 2.1595425257

10 −0.6031958219 −0.9688529236 2.1266061029

∞ −0.6031055757

Lmin Ref (sq,w=−1) A(w=−1) �(w=−1)

2 1.0366588370 −2.6329852431 2.4336613152
3 1.0442846989 −2.3545416365 2.2944945872
4 1.0467035384 −2.1844090010 2.2227750669
5 1.0477001325 −2.0688028151 2.1789288156
6 1.0481526051 −1.9898682648 2.1511947863
7 1.0483784334 −1.9340682142 2.1327570133
8 1.0485022480 −1.8926046519 2.1197454120
9 1.0485758832 −1.8603185323 2.1100523544

10 1.0486226265 −1.8342219236 2.1025132464
11 1.0486538611 −1.8125199233 2.0964523136
12 1.0486756030 −1.7940748336 2.0914535840
13 1.0486912486 −1.7781266664 2.0872465655
14 1.0487028225 −1.7641447178 2.0836471061

Lmin Ref (sq,w=1) A(w=1) �(w=1)

2 1.3107968081 −0.7156482298 2.4689333981
3 1.3093320071 −0.7881463786 2.5852771137
4 1.3089601334 −0.8429753668 2.6461540521
5 1.3087423951 −0.9168496742 2.7098055866
6 1.3085813800 −1.0307347078 2.7878824576
7 1.3084637131 −1.1971341766 2.8782847595
8 1.3083793230 −1.4306376635 2.9776440535
9 1.3083189900 −1.7531876469 3.0836969829

10 1.3082756267 −2.1979960385 3.1951197122
11 1.3082442022 −2.8146824223 3.3111199451
12 1.3082212320 −3.6772081777 3.4311777392
13 1.3082043053 −4.8963374373 3.5549124381
14 1.3081917409 −6.6392455365 3.6820180432

For each value of w (+1, −1, −1/4), we show the estimates of Ref (w), A(w) and �(w)

obtained by fitting three consecutive data points with L � Lmin. This means Lmin,Lmin +
1,Lmin +2 for w=±1, but Lmin,Lmin +2,Lmin +4 for w=−1/4. The row labelled ∞ shows
the known exact value (7.29) in the infinite-volume limit.
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fL(w) = f (w)+ π

6
c(w)L−2 +· · · (7.34)

where c(w) is the central charge (see Section 2.3); we therefore expect
�=2. Moreover, the central charge associated to the critical point of the
q=0 Potts model in the Berker–Kadanoff phase is predicted from (1.9) to
be c=−2. Finally, at w=−1/4 there is a phase transition that we expect
also to be a critical point; we therefore again expect �=2. Here, however,
the central charge is predicted from (1.6) to be c=−1.

Let us therefore use our finite-size data to estimate the central charge
c(w). As a first approach, we have fit the data to the Ansatz (7.34) with
no higher-order corrections. The results are displayed in Fig. 17(a). We
observe that there are two clear regimes separated by w=w0 = −1/4, in
qualitative agreement with the above discussion.

For w>w0, the estimates for the central charge are very close to c=0
when w0 <w∼< 0.4. This agrees well with the prediction that the system
is noncritical (the convergence of fL(w) to the bulk free energy f (w) is
exponentially fast, so that c=0). For w∼>0.4 we observe sizable downward
deviations from c= 0, even for large values of Lmin; but the estimates of
c increase monotonically and are at least consistent with convergence to
the value c= 0. These deviations from c= 0 can be explained as due to
crossover from the marginally repulsive (i.e., asymptotically free(24)) ferro-
magnetic fixed point at w=+∞, which by (1.4) is a c=−2 theory. In this
regime, we expect large finite-size corrections that are not adequately han-
dled by our Ansatz (7.34).

For w < w0, we find that the estimates for the central charge are
quite far away from the predicted value c=−2 (at least up to Lmin =13).
However, these estimates are increasing monotonically with Lmin, and it
is at least plausible that they are approaching c=−2 as Lmin →∞. Fur-
thermore, the estimates are closer to c= −2 for larger negative values of
w (i.e., for points deeper inside the Berker–Kadanoff phase). Indeed, for
large negative values of w we are closer to the renormalization-group fixed
point (1.2−), which lies at w= −∞; therefore, the corrections to scaling
are expected to be weaker for larger negative values of w. All these find-
ings reflect the marginally attractive nature of the RG fixed point at w=
−∞.(24) Indeed, the theory predicts very slow convergence to the infinite-
volume limit, as a consequence of the log logL/ logL and 1/ logL correc-
tions to scaling arising from the marginally irrelevant operator. It is quite
plausible that the behavior exhibited in Fig. 17(a) is a manifestation of
such logarithmic corrections to scaling.

It is instructive to plot the estimates of c(w) vs. 1/w, as shown in
Fig. 17(b). The smooth behavior of the plot near 1/w=0 suggests that the
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Fig. 17. (Color online) Estimates for the square-lattice central charge c(w) obtained by
fitting the free energy to the Ansätze (a,b) RefL(w) = Ref (w) + [c(w)π/6]L−2, and (c,d)
RefL(w)=Ref (w)+ [c(w)π/6]L−2 +AL−4. Fits are performed for Lmin =2 (•), 3 (�), 4 (�),
5 (�), 6 (◦), 7 (�), 8 (�), 9 (♦), 10 (×), 11 (+), 12 (∗) and 13 (⊕). Points with even (resp.
odd) L are shown in red (resp. blue). The black dot at 1/w=0, c=−2 marks the theoretical
prediction. The vertical brown dot-dot-dashed line marks the point w0 =−1/4.

fixed points lying at w=±∞ are in fact identical and have central charge
c=−2, in agreement with the prediction(24) that this is a theory of a pair
of free scalar fermions. The L-dependence of the estimates of c(w)—tend-
ing towards −2 as L→∞ when 1/w< 0, and towards 0 as L→∞ when
1/w>0—is likewise in agreement with the prediction(24) that this fixed point
is marginally repulsive for g≡1/w>0 and marginally attractive for g<0.
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Somewhat stabler estimates for the central charge can be obtained if
we fit the numerical data to the Ansatz

fL(w) = f (w)+ π

6
c(w)L−2 +AL−4 . (7.35)

As explained in Section 2.3, the term L−4 is predicted by conformal-
field-theory arguments; but we cannot rule out the existence of additional
correction terms, lying between L−2 and L−4, arising from irrelevant oper-
ators with critical exponents between y = −2 and y = −4. In practice,
inclusion of the L−4 term usually tends to accelerate the convergence of
the estimates for the central charge.(153,154) The resulting plot of c(w) vs.
w is shown in Fig. 17(c). We observe that the estimates for c(w) converge
more rapidly than with Ansatz (7.34), although we are still far away from
the predicted value c=−2 in the regime w<−1/4. For example, at w=−2
we obtain c≈ −2.487 at Lmin = 12 with the Ansatz (7.35), compared to
c≈−2.543 at Lmin =13 with the Ansatz (7.34). The corresponding plot of
c(w) vs. 1/w is shown in Fig. 17(d).

The mapping of the spanning-forest model to the N -vector model at
N =−1(24) suggests that a more correct Ansatz for the free energy in the
critical phase would be

fL(w) = f (w)+ π

6
c(w)L−2 +AL−2 log logL

logL
+B L−2

logL
. (7.36)

The plot of c(w) obtained from a fit to (7.36), restricted to the regime w<
−1/4, is shown in Fig. 18.36 We obtain values for the central charge closer
to the expected result c= −2 than for the simpler Ansätze (7.34)/(7.35).
For instance, for w=−2 we get c=−2.161 at Lmin =11.

For w=−1 we have extended the above analysis to include finite-size
data up to L= 16 (see Table XIII). The estimates for c(w=−1) continue
to increase monotonically, but we are still far away from the predicted
value c=−2. We obtain values slightly closer to c=−2 using the Ansatz
(7.35) than with the original Ansatz (7.34), but we are still far away. As a
side benefit, we obtain an estimate for f (sq,w=−1) that is slightly more
stable than (7.33b):

f (sq,w=−1) = 1.04883±0.00008 . (7.37)

36For w=−0.3 we found strong even–odd oscillations. Therefore, for this particular value we
performed the fits using the data with L=Lmin,Lmin +2,Lmin +4,Lmin +6.
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Fig. 18. (Color online) Estimates for the square-lattice central charge c(w) obtained
by fitting the free energy to the Ansatz RefL(w) = Ref (w) + [c(w)π/6]L−2 +
A log logL/(L2 logL) + B/(L2 logL). Fits are performed for Lmin = 2 (•), 3 (�), 4 (�), 5
(�), 6 (◦), 7 (�), 8 (�), 9 (♦), 10 (×), and 11 (+). Points with even (resp. odd) L are shown
in red (resp. blue). For w = −0.3, to avoid parity effects, we have performed the fits using
data with L=Lmin,Lmin +2,Lmin +4,Lmin +6.

If we use the improved Ansatz (7.36), the estimates for c(w = −1) still
increase monotonically for Lmin � 5 (see Table XIV), but these estimates
are now much closer to the predicted value c=−2 (e.g., for Lmin =13, we
get c≈ −2.046). Finally, this Ansatz provides a more stable and precise
estimate for f (sq,w=−1):

f (sq,w=−1) = 1.048755±0.000008 . (7.38)

For w=−1/4 we already know the exact value of the bulk free energy
f (w), namely (7.29). We therefore used this value and performed a one-
parameter fit to (7.34) to estimate c(w= −1/4): see Table XV. For even
L, the estimates of c increase monotonically from c≈ −1.79 at Lmin = 2
to c≈ −1.36 at Lmin = 14. This suggests that the central charge for even
widths would eventually converge to the predicted value c=−1 in the limit
Lmin →∞. For odd L, by contrast, the estimates of c decrease monotoni-
cally from c≈0.556 at Lmin =3 to c≈0.5036 at Lmin =15. This latter value
strongly suggests an effective central charge

ceffective(sq,w=−1/4) = 1/2 . (7.39)
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Table XIII. Fits of RefL(w =−1) on square-lattice strips to the Ansätze (7.34)/(7.35)

Lmin fL=f + (cπ/6)L−2 fL=f + (cπ/6)L−2 +AL−4

f (sq,w=−1) c(w=−1) f (sq,w=−1) c(w=−1) A(w=−1)

2 1.0995246990 −4.2033601324 1.0522322844 −3.0291759709 −1.7025269242
3 1.0640553881 −3.5936875870 1.0504479365 −2.9439796309 −1.9594730321
4 1.0553466191 −3.3275672082 1.0497297366 −2.8877415435 −2.2467529705
5 1.0522261288 −3.1785747743 1.0494002632 −2.8493574206 −2.5432790654
6 1.0508420314 −3.0834112435 1.0492104613 −2.8185453467 −2.8780896721
7 1.0501282194 −3.0166105063 1.0490891975 −2.7923749159 −3.2583728412
8 1.0497177416 −2.9664373949 1.0490078464 −2.7698463825 −3.6800970526
9 1.0494621793 −2.9269022644 1.0489513545 −2.7503180147 −4.1376812436

10 1.0492933116 −2.8946509060 1.0489109249 −2.7332535305 −4.6268794806
11 1.0491764712 −2.8676499122 1.0488811967 −2.7182077146 −5.1448634916
12 1.0490926063 −2.8445853935 1.0488588065 −2.7048231509 −5.6897520658
13 1.0490305778 −2.8245646824 1.0488415841 −2.6928174237 −6.2602275770
14 1.0489835393 −2.8069566713 1.0488280902 −2.6819676896 −6.8553060059
15 1.0489471059 −2.7913005767

We show the estimates of f (sq,w=−1), c(w=−1), and A(w=−1) obtained by fitting two
or three consecutive data points with L�Lmin.

Table XIV. Fits of RefL(w =−1) on square-lattice strips to the

Ansatz (7.36)

Lmin f (sq,w=−1) c(w=−1) A(w=−1) B(w=−1)

2 1.0481659817 −1.8395026016 −0.2962391773 −0.8240960988
3 1.0486170833 −2.0667855660 −0.1728865530 −0.7094169716
4 1.0487861877 −2.2333779695 −0.0629303046 −0.6281602055
5 1.0487985937 −2.2540969965 −0.0473045479 −0.6186355145
6 1.0487835568 −2.2152906621 −0.0796357366 −0.6352167690
7 1.0487715509 −2.1704302257 −0.1200678725 −0.6528623630
8 1.0487645572 −2.1343787723 −0.1547235661 −0.6658127726
9 1.0487606108 −2.1073401566 −0.1821652813 −0.6746153901

10 1.0487582804 −2.0867372527 −0.2040744739 −0.6806453142
11 1.0487568178 −2.0704483013 −0.2221173626 −0.6848921285
12 1.0487558491 −2.0571283328 −0.2374141788 −0.6879523513
13 1.0487551802 −2.0459596860 −0.2506617512 −0.6901835157

We show the estimates of f (sq,w= −1), c(w= −1), A(w= −1), and
B(w= −1) obtained by fitting four consecutive data points with L�
Lmin.
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Similar results are obtained by the two-parameter fit to the Ansatz (7.35)
with the bulk free energy fixed to its exact value (7.29). For even L, we
obtain values of c(w=−1/4) slightly closer to the predicted value c=−1
(the estimates increase monotonically from c≈ −1.57 at Lmin = 2 to c≈
−1.31 at Lmin =12). For odd L the estimates are stable around c≈0.501.

The free energies for even L are related to the ground state of
the corresponding continuum theory, since frustration effects are absent.
Similarly, it is natural to assume that the free energies for odd L are
related to the ground state of a modified continuum theory in which the
fields are subjected to a twist in the spatial direction (antiperiodic bound-
ary conditions). If this is indeed the case, conformal field theory(30–32) pre-
dicts that for L odd,

ceffective = c−24htwist . (7.40)

Assuming the conjecture (7.39) to be correct, the conformal weight of the
twist operator must then be

htwist = −1/16 . (7.41)

Table XV. Fits of RefL(w =−1/4) on square-lattice strips

to the Ansätze (7.34)/(7.35), using the exact value (7.29) of

f (sq,w =−1/4) in both Ansätze

Lmin fL=f + (cπ/6)L−2 fL=f + (cπ/6)L−2 +AL−4

c(w=−1/4) c(w=−1/4) A(w=−1/4)

2 −1.7867317647 −1.5700367024 −0.4538450772
3 0.5559211806 0.5004616666 0.2613468027
4 −1.6242104680 −1.4037258487 −1.8471276270
5 0.5204270917 0.5013187856 0.2501271410
6 −1.5017190128 −1.3532367216 −2.7988252525
7 0.5110679214 0.5017424517 0.2392574198
8 −1.4367580104 −1.3338122127 −3.4497467921
9 0.5073837852 0.5016573071 0.2428685331

10 −1.3996975232 −1.3212758647 −4.1061484386
11 0.5054907346 0.5015180462 0.2516914702
12 −1.3757353498 −1.3111049796 −4.8730151126
13 0.5043623971 0.5013945821 0.2626165842
14 −1.3585885169
15 0.5036237409

We show the estimates of c(w= −1) and A(w= −1) obtained by fit-
ting one or two consecutive data points of the same parity.
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The twist operator was not discussed in the original paper of Saleur(47)

on the CFT analysis of antiferromagnetic Potts models. However, recent
work(155) on the antiferromagnetic critical line (1.3) has identified the twist
operator with the fundamental disorder operator(156) of Zδ parafermions,
where δ is defined by (1.1). In the limit q→0 this confirms the conjecture
(7.41).

7.6. Square Lattice: Estimates of the Thermal Scaling Dimensions

The first step in obtaining the thermal exponent ν is to obtain the
inverse correlation lengths for a square-lattice strip of width L [cf. (2.36)]:

ξ−1
i (w;L)= log

∣∣∣∣
λ�(w)

λi(w)

∣∣∣∣ , (7.42)

where λ�(w) is the largest eigenvalue (in modulus) of the transfer matrix
associated to a square-lattice strip of width L and cylindrical boundary
conditions, and λi(w) is the i-th subdominant eigenvalue. In Fig. 19(a)
and (b) we have plotted the first two inverse correlation lengths ξ−1

i (w;L)
for all widths L�10 in the range −2�w�2.

The second step is to extract from this finite-width data the thermal
scaling dimensions xT,i . If w is a noncritical point, we expect as usual an
exponentially rapid convergence:

ξ−1
i (w;L) = ξ−1

i (w) + O(e−AiL), (7.43)

where 0<Ai(w) <∞. If w is a critical point, then the behavior of the
inverse correlation length can be described by the CFT prediction (2.37).
In order to fit the data in an unified fashion, we began by using the
Ansatz

ξ−1
i (w;L) = ξ−1

i (w)+ 2πxT,i(w)
L

. (7.44)

For a critical system, we expect ξ−1
i = 0, and then xT,i is the true scaling

dimension for that system, modulo higher-order finite-size-scaling correc-
tions that are neglected in (7.44). For a noncritical system, we expect that
ξ−1
i > 0. In this case, the L−1 term in (7.44) tries to mimic the exponen-

tially small corrections, so that the estimates of xT,i should tend rapidly to
zero as L grows.

We began by fitting our finite-width data to the Ansatz (7.44). We
found, as expected, three different regimes, according as w <−1/4, w=
−1/4 or w>−1/4.
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Fig. 19. (Color online) Values of the square-lattice inverse correlation length ξ−1
j (w) =

log |λ�/λj | for (a) j = 1 and (b) j = 2. Symbols indicate strip widths L= 2 (•), 3 (�), 4 (�),
5 (�), 6 (◦), 7 (�), 8 (�), 9 (♦), and 10 (×). Points with even (resp. odd) L are shown in red
(resp. blue). The black solid circles (•) correspond to the extrapolated infinite-volume limit of
the finite-size data (see text). The vertical dot-dot-brown dashed line marks the point w0 =
−1/4.
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Let us start by discussing the first correlation length ξ1: see Fig-
ure 19(a) for the finite-width data as well as the extrapolated infinite-width
values (black solid circles). Throughout the regime w < −1/4, the esti-
mated value of ξ−1

1 is small in magnitude, in agreement with the predic-
tion that this phase is critical. Indeed, for w∼<−0.5 we find that ξ−1

1 (w)∼<
0.095 and the estimates decrease steadily with Lmin. For −0.5∼<w∼<−1/4,
the estimates of ξ−1

1 are larger, but they again decrease as Lmin grows.
We interpret these deviations of ξ−1

1 from zero as arising from corrections
to scaling, which not surprisingly become stronger as the transition point
w0 = −1/4 is approached. We take all this as an indication that the true
value is ξ−1

1 (w)=0 throughout the region w<−1/4. We therefore repeated
the fit, imposing ξ−1

1 = 0. The resulting estimates for the scaling dimen-
sion xT,1 are displayed in Figure 20(a). We see that the scaling dimension
is close to the value xT,1(w)= 2 predicted by Saleur(47) for the Berker–
Kadanoff phase w<−1/4 [cf. (1.10)]. Furthermore, as we proceed deeper
into the Berker–Kadanoff phase (i.e., towards w more negative), the esti-
mates also become closer to xT,1 =2.

For w>−1/4, the estimated value of ξ−1
1 is strictly positive (corre-

sponding to a non-critical theory), at least up to w ≈ 0.8. Around w =
0 the inverse correlation length becomes very large, as expected; as w

increases beyond this point, ξ−1
1 decreases. For w∼> 0.8 our estimates of

ξ−1
1 become small (∼< 0.18); but we do not take this fact as an indication

of a critical system. Rather, it simply reveals the fact that the correlation
length ξ1 has become comparable to the strip widths we are considering,
and that the Ansatz (7.44) is not adequate to describe accurately the cor-
rections to scaling in this regime (indeed, there is no evidence of a phase
transition around w≈ 0.8). We expect, in fact, that the correlation length
ξ1 is finite for all w>0, tending to infinity as w→+∞. Our estimates for
ξ−1

1 are depicted in Fig. 19(a) as black solid dots.
The case w=w0 = −1/4 is rather special. We have already seen that

for even widths, this point is an exact endpoint of the limiting curve.
Therefore, ξ−1

1 (w=−1/4;L)=0 exactly for all even L. In particular, from
even L we conclude that xT,1 =0. The values of ξ−1

1 (w=−1/4;L) for odd
L are displayed in Table XVI, where we also show (in columns 3–5) the
results of fitting the data with odd L to the Ansatz (7.44). We see that the
estimate for ξ−1

1 is a small negative number, which decreases in modulus
as Lmin is increased. This suggests that ξ−1 =0 exactly, so we repeated the
fit with this value fixed. The results are shown in the last two columns of
Table XVI. As we increase Lmin, the estimate for xT,1 decreases; but it is
not clear whether it is tending to zero or to a nonzero value around xT,1 ≈
0.3. What is clear is that Saleur’s conjecture (1.7) for the thermal expo-



Spanning Forests and the q-State Potts Model 1241

Fig. 20. (Color online) Estimates for the square-lattice scaling dimension xTj (w) for (a) j=
1 and (b) j = 2, obtained by fitting the inverse correlation length to the Ansatz ξ−1

j (w)=
ξ−1
j,∞(w)+ 2πxTj (w)L−1. In the region w� −1/4 we have fixed ξ−1

j,∞ = 0; in the region w>

−1/4 we have left it variable. Fits are performed for Lmin = 2 (•), 3 (�), 4 (�), 5 (�), 6 (◦),
7 (�), 8 (�) and 9 (♦). Points with even (resp. odd) L are shown in red (resp. blue). The ver-
tical brown dot-dot-dashed line marks the point w0 =−1/4.
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Table XVI. Inverse correlation length ξ−1
1 (L) for the square

lattice at w =−1/4

L ξ−1
1 (L) Lmin ξ−1

1 + (2πxT,1)/L (2πxT,1)/L

ξ−1
1 xT,1 xT,1

3 0.8447211436 3 −0.04367 0.42418 0.40332
5 0.4893646433 5 −0.03794 0.41962 0.38942
7 0.3387055144 7 −0.02746 0.40793 0.37735
9 0.2573363732 0.36861

2n 0

We also show the results of fitting the odd-width data to the Ansatz
(7.44), either with ξ−1

1 variable (columns 4–5) or ξ−1
1 =0 fixed (column

6). The last row shows that for all even widths L, we have ξ−1
1 (L)=0.

nent along the critical antiferromagnetic curve, which reduces to xT,1 = 2
at q= 0, is incorrect, as our estimates are clearly smaller than this value.
If it is indeed the case that xT,1 = 0 (as we suspect), then the correlation-
length exponent is

ν = 1
2−xT,1

= 1
2

(7.45)

in agreement with our findings from the finite-size shift of the critical
point (Section 7.3 and Table VIII) and with the existence of a first-order
phase transition at w=w0.

The second inverse correlation length ξ−1
2 is displayed in Fig. 19(b).

If we try to estimate the thermodynamic limit of ξ−1
2 using the Ansatz

(7.44), we find that 0.56 ∼<ξ−1
2 ∼< 0.74 in the regime w<w0. At first sight

this could imply that this correlation length is finite when L→∞. How-
ever, because the correlation length ξ1 actually diverges in this regime, we
expect that ξ2 will do so as well. On the other hand, we expect that as
the index i grows, the finite-size corrections to ξi(L) will become larger.
We therefore repeated the fit, fixing ξ−1

2 = 0 for w <w0 and attempting
to extract xT,2 from the coefficient of the linear term in 1/L. The results
are displayed in Fig. 20(b). We see that in the Berker–Kadanoff phase the
value of this scaling dimension is close to xT,2 =4.

For w>w0, we find a pattern similar to what was observed for ξ1:
namely, the inverse correlation length grows as we approach w= 0, and
then it decreases, getting stable around ξ−1

2 ≈ 2.5. As we concluded that
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Table XVII. Inverse correlation length ξ−1
2 (L) for the square

lattice at w =−1/4

L ξ−1
2 (L) Lmin ξ−1

2 + (2πxT,2)/L (2πxT,2)/L

ξ−1
2 xT,2 xT,2

3 2.1006084199 3 0.51802 0.75563 1.00297
5 1.4675739282 5 0.19309 1.01421 1.16786
7 1.1034345588 7 0.06489 1.15703 1.22932
9 0.8726454559 9 1.24997

4 0.7229219112 4 0.09380 0.40051 0.46023
6 0.5132143892 6 −0.01991 0.50910 0.49008
8 0.3799322185 8 −0.04373 0.53942 0.48374
10 0.2952007610 10 0.46983

We also show the results of fitting the odd-width data to the Ansatz
(7.44), either with ξ−1 variable (columns 4–5) or ξ−1 =0 fixed (column
6). The fits are done separately for L odd and L even.

ξ1 remains finite in this regime, ξ2 should stay finite too; but the finite-size
corrections might be larger than for ξ1 (as happens in the w<w0 regime).

The values of ξ−1
2 at w=w0 =−1/4 are displayed in Table XVII. We

observe two different behaviors depending on the parity of the width L.
For even L we find that the estimates for xT,2 decrease as Lmin increases.
Furthermore those estimates are not far away from those obtained for
xT,1 with odd L (see Table XVI). For a fixed value of Lmin, the estimates
for xT,2 (even L) are systematically larger than the corresponding ones
for xT,1 (odd L); but it is unclear whether the limiting values coincide or
not.37 On the other hand, the estimates for xT,2 for odd L grows as Lmin
increases, and we can conclude that xT,2 ∼>1.25.

As the finite-size effects in the quantities ξ−1
i (L) seem to grow with

the index i, and we have seen that these corrections are important already
for i= 2 (at least for the widths considered here), we did not try to ana-
lyze the correlation lengths i � 3. However, it is worth noting the possi-
bility that some of the operators corresponding to i�3 are (like the ones
corresponding to i=1,2) more relevant than the operator with xT =2 that
was conjectured (incorrectly, we now know) by Saleur(46,47) to be the lead-
ing thermal operator [cf. (1.7)].

37Please notice that if we merge the ξ−1
1 data for odd L (displayed in Table XVI) with the

ξ−1
2 data for even L (displayed in Table XVII), we obtain a data set with notable even-odd

effects that prevent us from doing any joint fit.
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7.7. Triangular Lattice: Estimates of Critical Points and Phase

Boundary

The triangular-lattice data that we wish to extrapolate are collected in
Table VI and depicted graphically in Fig. 11. The quantities w0−(L) and
w0+(L) are defined only for even L, so we must perform fits to the Ansatz
(7.2) using L=Lmin,Lmin +2,Lmin +4. The quantity w0Q(L) is defined for
all L; and for the triangular lattice (contrary to what happened for the
square lattice) there do not seem to be significant even–odd oscillations.
We can therefore perform fits to (7.2) using L=Lmin,Lmin +1,Lmin +2.

The results of these fits are displayed in Table XVIII. The estimates
of w0 are very well behaved (particularly those based on w0Q), and from
Lmin =6,7,8 we can estimate

w0(tri) = −0.1753±0.0002 . (7.46)

This value is far away from −1/6 ≈ −0.1667, and so rules out the naive
conjecture that w0(L)=−1/r whenever L is a regular two-dimensional lat-
tice of coordination number r. As in the square-lattice case, the exponent
� seems to approach �=1/ν=2 as Lmin increases. This fact agrees with

Table XVIII. Fits for w0 on the triangular lattice, using the

Ansatz w0j (L)=w0 +AL−� (j =+,−,Q)

O Lmin w0 A �

w0− 2 −0.176711 −0.679548 3.212914
4 −0.175667 −0.303430 2.541774
6 −0.175334 −0.183161 2.204638

w0Q 2 −0.178005 −0.371851 2.978114
3 −0.175706 −0.222577 2.373516
4 −0.175505 −0.205877 2.299951
5 −0.175380 −0.189033 2.231829
6 −0.175345 −0.182054 2.205216
7 −0.175323 −0.175936 2.183217
8 −0.175311 −0.171338 2.167416

w0+ 2 −0.173481 −0.080930 1.516018
4 −0.174992 −0.120997 1.925676
6 −0.175316 −0.171962 2.171007

Each fit for w0± is based on data points with L = Lmin, Lmin +2,
Lmin +4; fits for w0Q are based on data points with L = Lmin,

Lmin +1, Lmin +2.
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the interpretation that there is a first-order phase transition at w=w0. In
Table XIX we present the results of fitting the data to the modified Ansatz
(7.11): the estimates converge slightly faster, and we again find

w0(tri) = −0.1753±0.0002 . (7.47)

If we fit the width of the interval [w0−,w0+] for even L to the Ansatz
AL−ω, we find

ωtri ≈ 6.0 , (7.48)

which is three times larger than ωsq =�≈2. In other words, on the trian-
gular lattice the interval [w0−,w0+] is extremely narrow, and gets rapidly
narrower as L grows. We do not know the reason for this different behav-
ior on the two lattices.

Next let us extrapolate the endpoints wB(L), handling separately their
real and imaginary parts. Once again, the real part of wB(L) seems to
diverge as L→∞ like c1 logL+ c2. We have used the Ansatz (7.12), and
the estimates for c1 and c2 as a function of Lmin are shown in columns

Table XIX. Fits for w0 on the triangular lattice, using the

Ansatz w0j (L)=w0 +A2L
−2 +A4L

−4 (j =+,−,Q)

O Lmin w0 A2 A4

w0− 2 −0.175684 −0.091446 −0.823270
4 −0.175347 −0.108955 −0.629315
6 −0.175247 −0.118958 −0.398856

w0Q 2 −0.176194 −0.101075 −0.379755
3 −0.175074 −0.129083 −0.218428
4 −0.175180 −0.124719 −0.260998
5 −0.175202 −0.123381 −0.280737
6 −0.175230 −0.121007 −0.330011
7 −0.175245 −0.119307 −0.377189
8 −0.175255 −0.117857 −0.429037

w0+ 2 −0.174942 −0.144129 0.147137
4 −0.175066 −0.137675 0.075637
6 −0.175242 −0.120065 −0.330093

Each fit for w0± is based on data points with L = Lmin, Lmin +2,
Lmin + 4; and those for w0Q are based on data points with
L=Lmin,Lmin +1,Lmin +2.
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2–3 of Table XX, Panel a. As for the square lattice, the estimates of c1
are rising with Lmin and not yet slowing down. This suggests that the true
value of c1 is quite a bit larger than the value ≈ 0.236 observed at our
largest Lmin. If forced to guess, we might estimate

c1 = 0.24±0.02, (7.49a)

c2 = −0.27±0.04. (7.49b)

The relation with the N =−1 vector model(24) predicts that

RewB(L) = c1 logL + c3 log logL + c2 + O

(
log logL

logL

)
(7.50)

Table XX. Fits for wB on the triangular lattice

(a) RewB(L)= c1 logL+ c2 RewB(L)= c1 logL+ c3 log logL+ c2

Lmin c1 c2 c2

2 0.265812 −0.302108 −0.342615
3 0.239695 −0.273416 −0.304290
4 0.233643 −0.265025 −0.293266
5 0.232791 −0.263654 −0.288928
6 0.233405 −0.264754 −0.286884
7 0.234402 −0.266694 −0.285815
8 0.235446 −0.268865 −0.285226
9 0.236434 −0.271036 −0.284900

10 −0.284730

(b) ImwB(L)= ImwB +AL−�

Lmin ImwB A �

2 0.369334 −0.205690 0.810857
3 0.398666 −0.215786 0.582965
4 0.401549 −0.216752 0.564881
5 0.398620 −0.216574 0.585571
6 0.396188 −0.217407 0.605898
7 0.394800 −0.218515 0.619295
8 0.394137 −0.219347 0.626437

(Panel a) For the real part, we use the Ansätze RewB(L)= c1 logL+ c2 with c1

and c2 free, and RewB(L)= c1 logL+ c3 log logL+ c2 with fixed c1 =√
3/(2π) and

c3 =−1/(2
√

3π) [see (7.50) and surrounding text]. (Panel b) For the imaginary
part, we use ImwB(L)= ImwB +AL−�. Two-parameter fits are based on data
points with L = Lmin,Lmin + 1; three-parameter fits are based on data points with
L=Lmin,Lmin +1,Lmin +2.
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with c1 =√
3/(2π)≈0.275664 and c3 =−1/(2

√
3π)≈−0.091888.(24) Indeed,

the ratio

c1(sq)
c1(tri)

= c3(sq)
c3(tri)

=
√

3≈1.732051 (7.51)

is characteristic of asymptotically free theories, and simply comes from
comparing the lattice free propagators with their continuum limits (see e.g.
ref. 157, equation 5.7).

In the last column of Table XX, panel a, we display the estimates of
the parameter c2 obtained by performing the one-parameter fit to the An-
satz (7.50) with c1 and c3 fixed to their theoretical values (and the correc-
tion terms O(log logL/ logL) neglected). Our estimate is

c2 = −0.285±0.005. (7.52)

However, the very-slowly-varying nature of the expected correction terms
and the narrow range of L values available here make plausible that the
true value for c2 differs from the above estimate by many times our esti-
mated error.

The imaginary part of wB(L), by contrast, seems to converge to a
finite value as L→∞: the estimates using the Ansatz (7.4) are displayed
in Table XX, panel b. We find

ImwB = 0.394±0.004 (7.53)

with �=0.63±0.05.
Finally, we tried to extrapolate the whole limiting curve B to the infi-

nite-volume limit, by the same methods used for the square lattice (Sec-
tion 7.3). We began by extrapolating Rew at the selected values Imw=
0.01,0.02 , . . . , using the Ansatz (7.4) for Rew. We obtained consistent
estimates of Rew for | Imw|∼<0.23 (see Table VII). The results are shown
by black dots in Fig. 11. Next we attempted to complete this curve at
larger Rew, using once again the theoretical predictions from the pertur-
bative renormalization group at small g= 1/w. Unfortunately, for the tri-
angular lattice the three-loop and four-loop computations have not yet
been performed; therefore, all we have available are the universal values
for the first two beta-function coefficients. Using the relation βcontinuum =√

3βtri (ref. 157, equation (5.7)) to match normalizations, we obtain

b2 = −w0/
√

3
∣∣∣
N=−1

=
√

3/(2π), (7.54a)

b3 = w1/3|N=−1 = −1/(2π)2 (7.54b)
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and hence

A1 = b3/b2 = −1/(2
√

3π) . (7.55)

Using the Ansatz (7.25) with β0 =0.394 and B3 =B4 =0 and imposing the
first derivative at α=∞ along with the estimated value and derivative at
α=0.0198, we obtain

α0 = −0.550842, (7.56a)

B1 = −1/(2
√

3π) ≈ −0.091888, (7.56b)

B2 = −0.122843. (7.56c)

The corresponding curve (7.25) is depicted as a black dotted-dashed curve
in Figure 11.

7.8. Triangular Lattice: Behavior of the Free Energy and its

Derivatives as w →w0

We have computed the real part of the strip free energy RefL(w)
for widths 2 � L � 13 and w = −2,−1.9, . . . ,2, as well as w = −0.175.
These results are displayed in Fig. 21. The solid black line represents the
extrapolation of the free energy to L=∞ using the Ansatz (7.27). We also
show the [10,10] Padé approximant to the small-w series for this quantity
(dashed violet line), and the large-w series (3.20) through order w−1 (dot-
dashed pink curves). Once again, the small-w series expansion agrees very
well with the free-energy data in the regime w>w0. On the other hand,
the large-w expansion gives very accurately the free energy in the whole
regime w∼<w0. The free energy has clearly a minimum at a value close to
the estimate w0(tri)≈−0.1753.

The first derivative of the free energy clearly has a jump discontinu-
ity at w0, as is seen on Fig. 22. Again, we have made a blow-up picture
(Fig. 23) in an effort to determine whether this discontinuity is finite or
infinite. As for the square-lattice case we find a clear parity effect: for odd
L, f ′′

L(w) has a jump discontinuity at w=w0Q, while for even L we find
divergences f ′′

L(w)∼ |w−w0±|−1/2 due to the square-root branch points
w=w0±(L). Note that for the triangular lattice the intervals [w0−,w0+]
for even L are extremely narrow [cf. (7.48)]; this makes it much easier,
compared to the square lattice, to extract the limiting behavior as L→∞
with w fixed, as it suffices to exclude from consideration a very narrow
region surrounding the interval [w0−,w0+]. In fact, Fig. 23 strongly sug-
gests that the discontinuity in f ′(w) is finite at w=w0. For w ↓w0, we
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Fig. 21. (Color online) Real part of the free energy for triangular-lattice spanning forests as
a function of w, for strips of width L= 2 (•), 3 (�), L= 4 (�), L= 5 (�), 6 (◦), L= 7 (�),
L=8 (�), 9 (♦), L=10 (×), L=11 (+), 12 (∗), and L=13 (⊕). To make clearer any possible
even-odd effect we have displayed in red (resp. blue) the points corresponding to even (resp.
odd) values of L. The black solid curve is obtained by extrapolating the finite-width data to
L→∞ and then joining the points. The violet dashed curve is the Padé [10,10] approximant
to our longest small-w series. The pink dot-dashed curve corresponds to the large-w expan-
sion (3.20) through order w−1.

observe that f ′ is very well approximated by the [10,10] Padé approxi-
mant to the small-w series for f ′. Thus, we can conclude that f ′+(w0)≡
limw↓w0 f

′(w)≈3.389 (this value comes from evaluating the Padé approx-
imant at w=w0 ≈−0.1753). On the other side, the curves f ′

L(w) for w<
w0− (even L) or w<w0Q (odd L) stay rather close to (and slightly above)
the first derivative of the large-w series (3.20), i.e. f ′(w)=1/w−1/(12w2).
We conclude that f ′−(w0)≡ limw↑w0 f

′(w)≈−8.14.38 Thus, the jump in the
internal energy is apparently finite and takes the value �f ′(w0)≈ 11.53.
The existence of a discontinuity in the first derivative of the free energy
implies that there is a first-order phase transition at w=w0 also for the
triangular-lattice model.

38We have empirically found that for large values of L and for w↑w0, the quantity δf ′(w)≡
f ′
L(w)− [1/w− 1/(12w2)] behaves approximately linearly in w. In fact, a rough fit of our

data for L = 9,10 gives δf ′(w) ≈ 0.727 + 2.580w. The value f ′−(w0) ≈ −8.14 comes from
evaluating both the large-w series and the fit for δf ′(w) at w=w0 ≈−0.1753.
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Fig. 22. (Color online) First derivative f ′
L(w) of the triangular-lattice free energy for strips

of width L= 2 (•), 3 (�), 4 (�), 5 (�), 6 (◦), 7 (�), 8 (�) 9 (♦), and 10 (×). Points with
even (resp. odd) L are shown in red (resp. blue). The violet dashed curve on the right corre-
sponds to the Padé approximant [10,10] to our longest small-w series. The pink dot-dashed
curve corresponds to the derivative of the large-w expansion (3.20), through order w−2. The
vertical brown dot-dot-dashed line marks the point w0 ≈−0.1753.

Since w0−(L) and w0+(L) vary with L, it is useful to plot f ′
L(w) vs

w−w0−(L) or w−w0+(L) in order to compare the behavior at “compa-
rable” values of w. Such plots are shown in Fig. 24(a,b). For both w<w0
and w>w0, we see that the region of divergence grows rapidly narrower as
L grows, so that at any fixed value of w−w0−(L)<0 [resp. w−w0+(L)>
0], f ′

L(w) clearly tends to a limiting value around −8.0 (resp. 3.4). This
plot confirms, in a most striking way, our conclusions in the preceding
paragraph. The evidence for a finite limit of f ′

L(w) as w→w0 from either
side is, in fact, vastly more compelling for the triangular lattice than for
the square lattice.

We have also computed the second derivative of the free energy: see
Fig. 25 for an overview plot, and Fig. 26 for a blow-up plot near w0
using a logarithmic vertical scale. Once again, for odd L, f ′′

L(w) has a
jump discontinuity at w=w0Q(L), while for even L we find divergences
f ′′
L(w)∼ |w − w0±(L)|−3/2 due to the square-root branch points at w =
w0±(L). However, the divergences of f ′′

L(w) for w≈w0± are extremely nar-
row, which allows us to extract with fair confidence the limit L→∞ at w
fixed �=w0, as follows:
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Fig. 23. (Color online) First derivative f ′
L(w) of the triangular-lattice free energy for strips

of widths 2 �L� 10 close to w0(sq)≈−0.1753. Curves for even (resp. odd) L are shown in
red (resp. blue). The violet dashed solid curve on the right corresponds to the Padé approxi-
mant [10,10] to our longest small-w series (this curve is barely visible, as it nearly coincides
with those for 2 � L� 5). The pink dot-dashed curve corresponds to the derivative of the
large-w expansion (3.20), through order w−2. The vertical brown dot-dot-dashed line marks
the point w0 ≈−0.1753.

(1) For w slightly above w0, the specific heat f ′′
L(w) stays very small

(and almost independent of L) until w goes fairly close to w0+(L). More-
over, the width of this “divergence” region becomes smaller as L grows.
This suggests that the infinite-volume specific heat f ′′(w) remains bounded
(and in fact) small as w↓w0, in sharp contrast to what was observed for
the square lattice. Indeed, the behavior for w ∼>w0 is well described for
L�5 by the [10,10] Padé approximant to the small-w series, from which
we can conclude that f ′′+(w0)≡ limw↓w0 f

′′(w)≈−1.187 (based on evaluat-
ing the Padé approximant at w=w0 ≈−0.1753).

(2) For w slightly below w0, by contrast, we find large negative values
for f ′′(w), although these large values do seem to remain finite as w↑w0.
Indeed, the data points for w<w0− (even L� 6) or w<w0Q (odd L� 7)
remain very close to the second derivative of the large-w expansion (3.20),
namely f ′′(w)=−1/w2 +1/(6w3). This suggests that f ′′(w) does not tend
to −∞ as w↑w0, but rather to the finite value f ′′−(w0)≡ limw↑w0 f

′′(w)≈
−63.5 (based on evaluating the large-w series at w=w0 ≈−0.1753).

In Figure 27(a,b) we plot f ′′
L(w) vs. w −w0−(L) or w −w0+(L) in

order to compare the behavior at “comparable” values of w. These plots
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Fig. 24. (Color online) First derivative f ′
L(w) of the triangular-lattice free energy for strips

of widths L=4,6,8,10. (a) Regime w<w0 plotted vs. w−w0−(L). (b) Regime w>w0 plot-
ted vs. w−w0+(L).

confirm our conclusion that f ′′
L(w) stays almost independent of L except

in a narrow region around w0±(L), which furthermore becomes narrower
as L grows, so that the infinite-volume specific heat f ′′(w) remains uni-
formly bounded as w→w0 from either side.
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Fig. 25. (Color online) Second derivative f ′′
L(w) of the triangular-lattice free energy for

strips of width L= 2 (•), 3 (�), 4 (�), 5 (�), 6 (◦), 7 (�), 8 (�), 9 (♦), and 10 (×). Points
with even (resp. odd) L are shown in red (resp. blue). The violet dashed curve on the right
corresponds to the Padé approximant [10,10] to our longest small-w series. The pink dot-
dashed curve corresponds to the second derivative of the large-w expansion (3.20), through
order w−3. The vertical brown dot-dot-dashed line marks the point w0 ≈−0.1753.

These findings on the behavior of the free-energy derivatives merit
some discussion. We have seen that, on the triangular lattice, both f ′ and
f ′′ apparently remain finite as w→w0 from either side; at w0 these quan-
tities simply jump from one finite value to another. This behavior is very
different from what was found for the square lattice (Section 7.4), where
f ′′ very likely diverges at w0 (at least when approached from above), and
f ′ may conceivably diverge as well. At least for fixed w<w0 (i.e., inside
the Berker–Kadanoff phase) one would expect some universal behavior (as
indeed happens for the central charge and the thermal scaling dimensions
xT,i). So the discrepancy between the square and triangular lattices is puz-
zling; see Section 8.3 for further discussion.

7.9. Triangular Lattice: Estimates of the Free Energy and Central

Charge

The real part of the triangular-lattice free energy at w=±1 is mono-
tonic in L, at least as far as we have been able to compute it (see
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Fig. 26. (Color online) Second derivative f ′′
L(w) of the triangular-lattice free energy for

strips of widths 2 � L � 10 close to w0(sq) ≈ −0.1753. Curves for even (resp. odd) L are
shown in red (resp. blue). The violet dashed solid curve on the right corresponds to the Padé
approximant [10,10] to our longest small-w series. This curve is barely visible, as it very sim-
ilar to that for L=5. The pink dot-dashed curve corresponds to the second derivative of the
large-w expansion (3.20), through order w−3. The vertical brown dot-dot-dashed line marks
the point w0 ≈−0.1753.

Table XXI). If this property continues to hold for larger L, we can con-
clude that

Ref (tri,w=1) � RefL=15(tri,w=1)≈1.7010224200, (7.57a)

Ref (tri,w=−1) � RefL=13(tri,w=−1)≈1.5273746626. (7.57b)

The lower bound (7.57a) falls between the rigorous lower and upper
bounds (2.43).

If we fit the finite-L data at w = ±1 to the Ansatz (7.8), we get
the results displayed in Table XXII. At w = −1, the estimates of the
exponent � are very close to �= 2 and apparently tending to it, exactly
as expected for the Berker–Kadanoff phase. At w=1, the estimated expo-
nent � is slightly larger than 2, and slowly rising; this is compatible with
the idea that w=1 is a noncritical point which has, however, a reasonably
large correlation length, so that the system is strongly affected by cross-
over from the critical point at w = +∞.39 Our preferred estimates for

39In Fig. 30(a) we observe that the extrapolated value for the inverse correlation length at
w= 1 is very close to zero. In fact, our best estimate is a small negative number, ξ−1

1 (w=
1)≈−0.01.
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Fig. 27. (Color online) Second derivative f ′′
L(w) of the triangular-lattice free energy for

strips of widths L=4,6,8,10. (a) Regime w<w0 plotted vs. w−w0−(L). (b) Regime w>w0

plotted vs. w−w0+(L).

Ref (tri,w) are

Ref (tri,w=1) = 1.70255±0.00010, (7.58a)

Ref (tri,w=−1) = 1.53413±0.00007. (7.58b)
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Table XXI. Values for the quantities RefL(w) (2.32) on trian-

gular-lattice strips of width L, infinitely length and cylindrical

boundary conditions for w =±1

L RefL(w=−1) RefL(w=1)

2 1.2070144097 1.5619770404
3 1.3954889413 1.6442216134
4 1.4579588323 1.6714852756
5 1.4861038633 1.6835902358
6 1.5011384591 1.6899375329
7 1.5100964902 1.6936439914
8 1.5158576372 1.6959785719
9 1.5197784405 1.6975342156

10 1.5225658002 1.6986169734
11 1.5246173608 1.6993972288
12 1.5261706619 1.6999756628
13 1.5273746626 1.7004147101
14 1.7007546649
15 1.7010224200

These values are indeed larger than the conjectured lower bounds (7.57);
and the estimate for Ref (tri,w = 1) is smaller than the rigorous upper
bound (2.43).

Finally, we can estimate the central charge of the model as a func-
tion of w, using the same method as for the square lattice. In this case, the
Ansatz (7.34) has to be modified to include the geometrical factor (2.35):

f (LP ×∞F ,w) = f (w)+
√

3πc(w)
12

L−2 +· · · . (7.59)

We began by fitting the data to the Ansatz (7.59) with no higher-order
correction terms. The results are displayed in Fig. 28(a). There are two
clear regimes separated by w0(tri)≈ −0.1753, and the values of the cen-
tral charge agree qualitatively with those found for the square lattice. In
Fig. 28(b) we show the same plot vs. 1/w; the behavior near 1/w = 0
is once again in agreement with the prediction(24) that the fixed point at
1/w=0 has central charge c=−2 and is marginally repulsive for g≡1/w>
0 and marginally attractive for g<0.

In Fig. 28(c) we show the estimates for the central charge c(w) com-
ing from the modified Ansatz in which an L−4 term is included. The esti-
mates seem to converge faster in the region w<w0, but they are still far
from the expected value of c=−2. In Fig. 28(d) we show the correspond-
ing plot vs. 1/w. Finally, we show in Fig. 29 the estimates for c(w) for
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Table XXII. Fits of RefL(w) on triangular-lattice strips to the

Ansatz (7.27)

Lmin Ref (tri,w=−1) A(w=−1) �(w=−1)

2 1.5308739278 −1.4384536794 2.1510787148
3 1.5330939357 −1.3873709566 2.1033613397
4 1.5337115052 −1.3570788682 2.0815319808
5 1.5339268515 −1.3384597021 2.0701440440
6 1.5340208601 −1.3256428931 2.0631760539
7 1.5340693211 −1.3159780873 2.0583757793
8 1.5340972882 −1.3082485775 2.0548049206
9 1.5341147600 −1.3018238947 2.0520093666
10 1.5341263362 −1.2963375714 2.0497401388
11 1.5341343629 −1.2915577847 2.0478477572

Lmin Ref (tri,w=1) A(w=1) �(w=1)

2 1.7033149783 −0.6276028679 2.1507031799
3 1.7031440137 −0.6317621745 2.1593529516
4 1.7030024774 −0.6399100527 2.1718288870
5 1.7028803279 −0.6534158534 2.1887282099
6 1.7027905253 −0.6704079915 2.2069423251
7 1.7027253709 −0.6899461332 2.2253789191
8 1.7026770177 −0.7116977010 2.2437647939
9 1.7026401520 −0.7355754454 2.2620579091
10 1.7026113515 −0.7615959157 2.2802754383
11 1.7025883787 −0.7898291690 2.2984470780
12 1.7025697290 −0.8203795382 2.3166023025
13 1.7025543610 −0.8533775965 2.3347671232

For each value of w = ±1, we show the estimators of Ref (tri,w),
A(w), and �(w) obtained by fitting three consecutive data points with
L�Lmin.

w<w0 using the improved Ansatz (7.36). As for the square-lattice case,
these results agree better with the expected result c=−2.

For w=−1 we have extended the above analysis to include finite-size
data up to L=13 (see Tables XXIII and XXIV). As for the square-lattice
case, we find a good agreement with the predicted value c= −2 only for
the improved Ansatz (7.36): for Lmin = 10 we find c(w = −1)≈ −2.077.
Finally, we obtain a more stable and precise estimate for f (tri,w=−1):

f (tri,w=−1) = 1.534166±0.000008 . (7.60)
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Fig. 28. (Color online) Estimates for the triangular-lattice central charge c(w) obtained by
fitting the free energy to the Ansätze (a,b) RefL(w)=Ref (w)+ [c(w)

√
3π/12]L−2, and (c,f)

RefL(w)=Ref (w)+ [c(w)
√

3π/12]L−2 +A/L4. Fits are performed for Lmin =2 (•), 3 (�), 4
(�), 5 (�), 6 (◦), 7 (�), 8 (�), 9 (♦), 10 (×) 11 (+), and 12 (∗). Points with even (resp. odd)
L are shown in red (resp. blue). The black dot at 1/w=0, c=−2 marks the theoretical pre-
diction. The vertical brown dot-dot-dashed line marks the point w0 ≈−0.1753.

7.10. Triangular Lattice: Estimates of the Thermal Scaling

Dimensions

As for the square lattice, we began by obtaining the inverse corre-
lation lengths ξ−1

i (w;L) for finite-width strips using the definition (7.42).
The first and second inverse correlation lengths for widths L�10 are plot-
ted in Fig. 30(a) and (b), respectively.
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Fig. 29. (Color online) Estimates for the triangular-lattice central charge c(w)

obtained by fitting the free energy to the Ansatz RefL(w) = Ref (w) + [c(w)π/6]L−2 +
A log logL/(L2 logL) + B/(L2 logL). Fits are performed for Lmin = 2 (•), 3 (�), 4 (�), 5
(�), 6 (◦), 7 (�), 8 (�), 9 (♦), and 10 (×). Points with even (resp. odd) L are shown in red
(resp. blue).

Table XXIII. Fits of RefL(w =−1) on triangular-lattice strips to the Ansätze

(7.34)/(7.35)

Lmin fL=f + (cπ√
3/12)L−2 fL=f + (cπ√

3/12)L−2 +AL−4

f (tri,w=−1) c(w=−1) f (tri,w=−1) c(w=−1) A(w=−1)

2 1.5462685665 −2.9926499123 1.5356134959 −2.6871786001 −0.3835825420
3 1.5382772635 −2.8340398079 1.5349369676 −2.6498796414 −0.4810026139
4 1.5361394741 −2.7586078037 1.5346428114 −2.6232826442 −0.5986650932
5 1.5353079949 −2.7127659475 1.5344818361 −2.6016275649 −0.7435428479
6 1.5349033457 −2.6806402993 1.5343868622 −2.5838245327 −0.9110768209
7 1.5346773842 −2.6562227934 1.5343273821 −2.5690020579 −1.0976063455
8 1.5345391118 −2.6367069990 1.5342881192 −2.5564469074 −1.3011455956
9 1.5344487544 −2.6205664178 1.5342610311 −2.5456343907 −1.5205586626

10 1.5343866971 −2.6068808277 1.5342416477 −2.5361873825 −1.7550985119
11 1.5343423765 −2.5950541591 1.5342273504 −2.5278319025 −2.0042150985
12 1.5343097063 −2.5846792515

We show the estimates of f (sq,w=−1), c(w=−1), and A(w=−1) obtained by fitting two
consecutive data points with L�Lmin.
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Table XXIV. Fits of RefL(w =−1) on triangular-lattice strips to

the Ansatz (7.36)

Lmin f (tri,w=−1) c(w=−1) A(w=−1) B(w=−1)

2 1.5342817466 −2.2815122109 −0.0987125628 −0.2264608061
3 1.5342534868 −2.2650710611 −0.1064401573 −0.2336450376
4 1.5342099124 −2.2155031379 −0.1347733865 −0.2545830616
5 1.5341878304 −2.1729190238 −0.1625865218 −0.2715365779
6 1.5341775460 −2.1422717553 −0.1846992056 −0.2828772076
7 1.5341723071 −2.1196678362 −0.2023424141 −0.2905771445
8 1.5341693702 −2.1021864612 −0.2168955988 −0.2960154919
9 1.5341675995 −2.0881779553 −0.2292081839 −0.2999650620

10 1.5341664720 −2.0766679965 −0.2398080978 −0.3028824071

We show the estimates of f (tri,w= −1), c(w= −1), A(w= −1), and
B(w= −1) obtained by fitting four consecutive data points with L�
Lmin.

The scaling exponent xT,i is obtained by fitting the finite-width data
to the Ansatz

ξ−1
i (w;L) = ξ−1

i (w)+
√

3πxT,i(w)
L

, (7.61)

which includes the geometrical factor (2.35). The applicability of this
Ansatz is subject to the same comments made in Section 7.6. The
estimates of the infinite-volume correlation length ξ−1

i are depicted in
Figures 30(a,b) by black solid dots.

Let us begin by discussing the first correlation length ξ1. As expected,
we found clearly different behavior in the regimes w<w0 and w>w0.

For w<w0, the estimated infinite-volume inverse correlation length is
compatible with the value ξ−1

1 =0. Indeed, we find estimates that are small
negative numbers, whose absolute value decreases as we increase Lmin;
we therefore expect that they will converge to zero as L→∞. We there-
fore repeated the fit, fixing ξ−1

1 = 0. The results for xT,1 are displayed in
Fig. 31(a). Inside the Berker–Kadanoff phase w<w0, we again find that
the scaling dimension is close to Saleur’s prediction xT,1 = 2. The scaling
dimension at the transition point w=w0 is difficult to obtain, as we do
not know the exact value of w0 and the correction-to-scaling effects are
very large near this point.

For w>w0, by contrast, we find a clear non-zero estimate for ξ−1
1 ,

at least up to w ≈ 0.5. For w ∼> 0.6, our estimates for ξ−1
1 are rather

small (ξ−1
1 ∼<0.07); but as before, we believe this indicates only that ξ1 has

become comparable to the strip widths and that we are unable to handle



Spanning Forests and the q-State Potts Model 1261

Fig. 30. (Color online) Values of the triangular-lattice inverse correlation length ξ−1
j (w)=

log |λ�/λj | for (a) j = 1 and (b) j = 2. Symbols indicate strip widths L= 2 (•), 3 (�), 4 (�),
5 (�), 6 (◦), 7 (�), 8 (�), 9 (♦), and 10 (×). Points with even (resp. odd) L are shown in red
(resp. blue). The black solid circles (•) correspond to the extrapolated infinite-volume limit of
the finite-size data (see text). The vertical dot-dot-brown dashed line marks the point w0 ≈
−0.1753.
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Fig. 31. (Color online) Estimates for the triangular-lattice scaling dimension xTj (w) for (a)
j =1 and (b) j =2, obtained by fitting the inverse correlation length to the Ansatz ξ−1

j (w)=
ξ−1
j,∞(w)+ 2πxTj (w)L−1. In the region w�−0.175 we have fixed ξ−1

j,∞ = 0; in the region w>

−0.175 we have left it variable. Fits are performed for Lmin =2 (•), 3 (�), 4 (�), 5 (�), 6 (◦),
7 (�), 8 (�), and 9 (♦). Points with even (resp. odd) L are shown in red (resp. blue). The
vertical brown dot-dot-dashed line marks the point w0 ≈−0.1753.
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the strong corrections to scaling in this regime. (Indeed, we have not found
any evidence of a phase transition near w≈0.5.)

For ξ2 the overall picture is very similar, although the finite-size cor-
rections are larger (as happened in the square-lattice case). For w∼<−0.5,
the data are compatible with ξ−1

2 = 0: indeed, our estimates for ξ−1
2 are

small negative numbers, whose absolute value decreases as we increase
Lmin. In the interval −0.5 ∼<w<w0, we find strong correction-to-scaling
effects; but again we expect that the correlation length will diverge, as
it does for ξ1. We therefore repeated the fit, fixing ξ−1

2 = 0. The values
obtained for xT,2 are displayed in Fig. 31(b). In this regime the estimates
are close to xT,2 = 4, as for the square lattice. In the regime w>w0, the
behavior is similar to that of ξ1: ξ−1

2 (L) tends to a finite value, which goes
to zero as w→∞.

8. DISCUSSION

8.1. Behavior of Dominant-Eigenvalue-Crossing Curves B
We have computed the symbolic transfer matrices for square- and tri-

angular-lattice strips of widths 2 �L�10 with cylindrical boundary condi-
tions. From these matrices one can compute (a) the generating polynomial
of spanning forests FG(w) for a cylindrical strip of width L and arbitrary
length n, along with its complex zeros, and (b) the accumulation points of
such zeros in the limit n→∞. According to the Beraha–Kahane–Weiss the-
orem (Section 2.4), these zeros accumulate at certain points (the isolated
limiting points, which seem not to exist in the models studied here) and
along certain curves (the limiting curves B). By studying the behavior of
these limiting curves as a function of the strip width L→∞, we hope to
shed light on the thermodynamic limit of the model, in which L,n→∞.

For strips of widths L � 6, we were able to compute the limiting
curves B using the resultant method;(5) this method allows a complete
determination of B, including all its endpoints. For widths 7 �L�10, we
used the direct-search method, which gives only lower bounds on the num-
bers of endpoints, as it could miss some. For L= 7,8 we were able to
obtain a fairly good description of B, but for L� 9 we were only able to
obtain the points at the discrete set | Imw|= 0,0.01,0.02, etc. These lim-
iting curves B are shown in Figs. 7 and 11 for the square and triangular
lattices, respectively, and their characteristics are summarized in Tables V
and VI. In all cases we can verify the identity

endpoints = (2 × components) + (2 × double points) + (T points)

− (2 × enclosed regions) , (8.1)
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which can be derived by simple topological/graph-theoretic arguments.
Furthermore, for all but one of the strips considered in this paper, the lim-
iting curves B do not contain any enclosed region or T point (the only
exception is the L = 4 square-lattice strip, which contains two enclosed
regions and a single T point, as shown in Fig. 4). Finally, the number of
double points #Q is given simply by

#Q = mod(L−1,2) =
{

1 if L is even,
0 if L is odd. (8.2)

Therefore, the topological structure of the sets B can be summarized very
simply: for odd L, the set B consists of a collection of arcs separated by
extremely small gaps (these gaps are in fact nearly invisible in Figs. 7 and
11 for L∼>5); for even L, it is the same, except that the component touch-
ing the real axis consists of a complex arc and a small segment of the real
axis intersecting at a double point at w=w0Q.

Furthermore, the number of endpoints (#E) and the number of com-
ponents (#C) seem to grow with the strip width in a very regular way.
In fact, for all the strips considered in this paper except the L=4 square
lattice, we find

#E = 2L, (8.3a)

#C = L−mod(L−1,2). (8.3b)

We conjecture that (8.2) and (8.3) hold for larger L as well. If this con-
jecture is indeed true, it suggests that the endpoints (whose number grows
linearly with L) will become dense in B. This may imply in turn that the
infinite-volume limiting curve B∞ will be a natural boundary for the infi-
nite-volume free energy f (w), i.e., a boundary through which analytic con-
tinuation of f (w) is impossible.

Finally, we have found that the endpoint wB(L) behaves with L in
a very regular way: namely, its real part tends logarithmically to +∞ [cf.
(7.12)–(7.15) and (7.49)–(7.52)] while its imaginary part tends to a finite
value [cf. (7.16)–(7.17) and (7.53)]. This suggests that the infinite-volume
limiting curve B∞ will extend to infinity. This behavior is consistent with
the idea of an asymptotically free theory defined around the critical point
at w=+∞.(24)

8.2. Conformal Field Theory of the q →0 Limit

In this paper we have obtained several new pieces of information con-
cerning the phase diagram of the q→ 0 limit of the Potts model on the
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square and triangular lattices, and on the interpretation of this model in
terms of conformal field theory (CFT). This information provides evidence
concerning the behavior of the Potts model also at small positive q, con-
firming some conjectures of Saleur(46,47) and refuting others.

We have found that the phase diagram for the two lattices is similar:
for w>w0, the model is noncritical with exponential decay of correlations;
for w < w0, the model is critical and can be interpreted as a Berker–
Kadanoff phase. Finally, at w=w0 the model displays a first-order critical
point,(94) that is, a first-order transition point for which the correlation
length diverges as w ↓w0. The transition at w =w0 corresponds to the
q→0 limit of the antiferromagnetic transition curve of the Potts model.

It is well-known that the Potts model in the antiferromagnetic (−1�
v < 0) and unphysical (v < −1) regimes may display nonuniversal (i.e.
lattice-dependent) behavior; this is true in particular for the zero-tempera-
ture antiferromagnetic (chromatic polynomial) limit v=−1.(5–7) Since both
the Berker–Kadanoff phase and the w=w0 transition point lie in the anti-
ferromagnetic regime w < 0 of the spanning-forest model, it is therefore
interesting to assess the extent (if any) to which they display universality.

For the Berker–Kadanoff phase we have indeed found a number of
universal features. For both the square- and triangular-lattice models, the
central charge is found to be consistent with the q→ 0 limit of Saleur’s
prediction (1.9) for the Berker–Kadanoff phase:

c(Berker–Kadanoff) = −2 . (8.4)

Furthermore, the first two thermal critical exponents appear to be given
by

xT,1 = 2, (8.5a)

xT,2 = 4 (8.5b)

for both lattices. The first exponent agrees with the q→0 limit of Saleur’s
prediction (1.10). The second exponent can presumably be derived from a
more detailed analysis of the free fermion theory that is thought to govern
the w→−∞ limit.

It is interesting that the results (8.4) and (8.5a) are identical to what
is predicted(24) for the ferromagnetic fixed point at w= +∞. Indeed, all
our results are consistent with the idea(24) that the fixed points lying at
w= ±∞ are identical and are given by a theory of a pair of free scalar
fermions, with central charge c=−2 and marginal first thermal exponent
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xT,1 = 2. Moreover, renormalization-group computations in the four-fer-
mion model describing spanning forests at g≡ 1/w �= 0(24) show that the
g= 0 fixed point is marginally repulsive for g > 0 and marginally attrac-
tive for g<0. Therefore, the Berker–Kadanoff phase at −∞<w<w0 ren-
ormalizes onto this free fermion theory and hence has c= −2, while the
phase at w0 <w<+∞ is noncritical (hence c= 0) and obeys asymptotic
freedom as w→ +∞. More generally, there is a separatrix in the com-
plex g-plane separating these two regimes: it is given by the curve B∞. In
Figs. 32 and 33 we have depicted the relevant phase diagrams, by map-
ping Figs. 7 and 11 from the w-plane to the g-plane. Our best estimate
for the separatrix B∞ is given by the black dots and, more roughly, by the
black dotted-dashed curve, which were obtained by the methods described
in Sections 7.3 and 7.7. This phase diagram in the complex g-plane (where
g is the bare coupling) is typical of what is expected for an asymptotically
free theory, whose renormalization-group flow satisfies

dg

dl
= b2g

2 + b3g
3 + · · · (8.6)

with b2>0. Points lying inside the cardioid B∞ are attracted as l→+∞ to
the fixed point at g=0, and hence belong to the complex Berker–Kadanoff
phase. Points lying outside the cardioid B∞ flow away from the fixed point
at g=0, and hence belong to a different phase (i.e. the noncritical phase).

Let us now turn to the w=w0 transition point, which corresponds to
the q→ 0 limit of the antiferromagnetic transition curve and gives infor-
mation about the probable behavior of this curve at small positive q. For
the square lattice, we have strong evidence that the correlation length ξ(w)
diverges as w↓w0, so that this transition point is indeed a critical point.
For the triangular lattice, however, the analysis of this point is difficult,
since the exact value of w0 is unknown and we know fewer terms in
the small-w expansion. The following pieces of information are therefore
based on the square-lattice case only:

(1) For even L we find a central charge that is consistent with the q→
0 limit of Saleur’s prediction (1.6) for the antiferromagnetic critical curve:

c = −1 . (8.7)

For odd L, we find [cf. (7.39)] that the effective central charge is consistent
with

ceff = 1/2 , (8.8)
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Fig. 32. (Color online) Finite-L limiting curves and phase diagram (Fig. 7) for the square
lattice, mapped to the 1/w plane. Our best estimate for the infinite-volume phase boundary
B∞ is depicted in black dots (for −0.33 ∼< Imw∼< 0.33) and as a black dotted-dashed curve
(very rough estimate).

which we explain by conjecturing the existence of a twist operator with
conformal weight

htwist = −1/16 (8.9)

[cf. (7.40)–(7.41)]. The role of boundary-condition-changing operators in
the type of CFT proposed by Saleur(46,47) is currently under study.(155)

(2) Our data at w>w0 and even L are consistent with the following
behavior as w ↓w0 = −1/4 of the infinite-volume correlation length ξ(w)

and the infinite-volume free energy f (w):

ξ(w) ∼ (w−w0)
−1/2, (8.10a)

f ′′(w) ∼ (w−w0)
−1, (8.10b)

f ′(w) ∼ log(w−w0), (8.10c)

f (w) ∼ (w−w0) log(w−w0) . (8.10d)
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Fig. 33. (Color online) Finite-L limiting curves and phase diagram (Fig. 11) for the tri-
angular lattice, mapped to the 1/w plane. Our best estimate for the infinite-volume phase
boundary B∞ is depicted in black dots (for −0.23 ∼< Imw ∼< 0.23) and as a black dotted-
dashed curve (very rough estimate).

(3) We find that the dominant thermal eigenvalue is consistent with

xT,1 = 0 (8.11)

and hence ν = 1/2. This result is in clear disagreement with Saleur’s pre-
diction xT,1 = 2 arising from the q→ 0 limit of his conjecture (1.7)/(1.8);
it indicates that the thermal operators along the antiferromagnetic critical
curve need to be restudied.(25) Our data for the second thermal eigenvalue
indicates that

xT,2 ∼> 1.25 . (8.12)

An important open question is to obtain the same quantities for the
triangular-lattice model and compare the to the above ones. This will pro-
vide a direct check of universality for these two models.
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8.3. Behavior of the Free Energy and its Derivatives

We have studied the behavior of the free energy and its deriva-
tives near the transition point w=w0 using two complementary methods:
extrapolation of small-w series expansions (Appendix A) and finite-size
analysis of the transfer-matrix data (Sections 7.4 and 7.8).

Series expansions give valuable information concerning the behavior
as w ↓w0, directly in the infinite-volume limit. Our results show that for
the square lattice f ′′ diverges as w↓w0 with an exponent α≈1, while f ′ is
most likely finite (but we cannot rule out a very weak divergence). For the
triangular lattice, both f ′′ and f ′ appear to take finite values when w↓w0.
The finite-size data are consistent with these conclusions.

For the regime w↑w0, by contrast, only the finite-size data give useful
information. For the square lattice we have weak evidence for a diverging
f ′′. For the triangular lattice, we have clear evidence that f ′′ and f ′ stay
finite as w approaches w0 from below.

These puzzling differences of behavior between the square and trian-
gular lattices have implications for universality; and conversely, the sundry
(and more or less plausible) universality conjectures have implications for
the interpretation of our numerical results. On the one hand, the analytical
results of ref. 24 show that, at least for the spanning-forest model (i.e., the
limit q, v→ 0 with w= v/q fixed of the Potts model), the behavior inside
the Berker–Kadanoff phase is universal: more precisely, at each fixed w<

w0, the spanning-forest model is simply the c= −2 theory of a pair of
free scalar fermions, perturbed by a four-fermion operator that is (in this
phase) marginally irrelevant. On the other hand, as noted in the Introduc-
tion, Saleur (ref. 46, p. 669) expects universality not only for the Berker–
Kadanoff phase, but also for the critical theories forming its upper and
lower boundaries. The validity of this latter conjecture is, however, an
open question: in particular, we do not yet understand very well the new
phase-transition curve that we have found(28) in the triangular-lattice Potts
model, so we are unable to say for sure whether it belongs to the same
universality class as the square-lattice antiferromagnetic critical curve, in
the sense of having the same central charge c(q) and the same critical
exponents xT 1(q), xT 2(q), etc.

Now, the behavior as w → w0 is controlled by the theory at w0.
Therefore, if universality does in fact hold (at least in the limit q→0) for
the upper boundary of the Berker–Kadanoff phase, then (barring subtle-
ties) the square and triangular lattices should exhibit identical behavior as
w→w0. In particular, our clear results on the triangular lattice (f ′′ and
f ′ staying finite as w↑w0) would suggest that the same behavior ought to
occur for the square lattice; if so, our contrary indications for the square



1270 Jacobsen et al.

lattice would be an artifact of too-small strip widths L. Likewise, our clear
results on the square lattice (f ′′ diverging as w ↓w0) would suggest that
the same behavior ought to occur for the triangular lattice; if so, our con-
trary indications for the triangular lattice would be an artifact of too-short
small-w series.

On the other hand, if universality does not hold for the theory at
w0, then we are unable at present to draw any firm conclusion about the
behavior of f ′′ as w↑w0 on the square lattice, or as w↓w0 on the trian-
gular lattice.

APPENDIX A: SERIES ANALYSIS

In this appendix we shall analyze the small-w series expansions dis-
played in Table II. For simplicity, we shall denote the series expansions for
the free energy and its derivatives as follows:

f (w) =
∞∑

k=1

fkw
k ∼ (w−w0)

2−α, (A.1a)

f ′(w) =
∞∑

k=0

ek w
k =

∞∑

k=0

(k+1)fk+1w
k ∼ (w−w0)

1−α, (A.1b)

f ′′(w) =
∞∑

k=0

ckw
k =

∞∑

k=0

(k+1)(k+2)fk+2w
k ∼ (w−w0)

−α. (A.1c)

The rightmost side of each equation in (A.1) shows the expected leading
asymptotic behavior for w near w0 (assuming, for simplicity, that no mul-
tiplicative logarithms occur). We have used the standard notation α for the
critical exponent associated to the “specific heat” f ′′(w).

Let us start with the square-lattice case, which is the one that leads to
the most interesting results, both because the series is twice as long as for
the triangular lattice and because the putatively exact critical point w0 =
−1/4 is known. The sign of the coefficients of the free-energy expansion
has a clear alternating pattern (at least up to k= 47): fk ∼ (−1)k+1. This
behavior is a clear sign that the singularity nearest to the origin lies on
the negative w-axis.

A first (and very rough) approach can be obtained using the ratio
method (ref. 158, and references therein). Let us suppose that F(w) is a
function for which we can obtain the series expansion F(w)=∑∞

k=1 fkw
k,

and whose behavior close to w=w0 is of the form

F(w) ∼ A

(
1− w

w0

)λ
+B . (A.2)
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Fig. 34. (Color online) Results of studying the small-w series expansions for the square
lattice using the ratio method. (a) We show the ratio rk of two consecutive coefficients [cf.
(A.3)] as a function of 1/k for the free energy f (w) (◦), its first derivative f ′(w) (�), and its
second derivative f ′′(w) (�). (b) We show the biased estimate (based on w0 =−1/4) for the
critical parameter λ for the same three functions as above.

Estimates of the critical point w0 and the critical exponent λ can be
obtained from the series coefficients {fk} by computing the ratios

rk = fk

fk−1
. (A.3)

In absence of any competing singularity, a plot of rk vs 1/k is expected to
be a straight line taking the value 1/w0 at 1/k=0 and having slope −(λ+
1)/w0. In Fig. 34(a) we show the ratio rk vs 1/k for the free energy and
its first and second derivatives. In addition to the expected linear behav-
ior in 1/k, we find a strongly oscillatory behavior that makes the analysis
rather difficult.40 It is apparent from Fig. 34(a) that the limit of the three
sequences as 1/k→ 0 is close to the expected value w0(sq)= −1/4. As a
matter of fact, the value of w0 can be estimated from the sequence(158)

(k+ ε)rk − (k+ ε−1)rk−1 = 1
w0

[
1 + O(1/k2)

]
, (A.4)

where ε is any small k-shift. The oscillations are smaller for these new
sequences, and we conclude that w0 =−0.250(1). We can therefore assume

40It is not clear from Fig. 34(a) what is the period of these oscillations (if indeed they are
periodic at all), but it is clear that the period is not 2.
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that w0 = −1/4 exactly, and try to estimate the exponent λ using the
sequence(158)

λk ≡ k−1−kw0rk = λ [1 + O(1/k)] (A.5)

with w0 fixed to its theoretical value. The estimates λk as a function of
1/k for f , f ′ and f ′′ are displayed in Fig. 34(b). Again, we observe oscil-
lations in addition to the expected linear behavior in 1/k. Rough estimates
of λ can be obtained from the corresponding sequences {λk}:

2−α = 1.10(8), (A.6a)

1−α = 0.10(3), (A.6b)

α = 0.90(3). (A.6c)

These results are close to the expected value α=1 for a first-order critical
point,(95) although the error bars cannot be taken at face value.

A more quantitative study can be performed using differential approx-
imants (ref. 158, and references therein). The Kth order differential ap-
proximant to a function F(w) is built as follows: we choose polynomials
Q0,Q1, . . . ,QK and P of degrees N0,N1, . . . ,NK and L, respectively, so
that the solution F̃ of the inhomogeneous linear differential equation

K∑

j=0

Qj(w)

(
w

d

dw

)j
F̃ (w) = P(w) (A.7)

agrees with the first coefficients of the series F(w) = ∑N
k=0 fkw

k. The
resulting equations can be solved if the number of unknown coefficients in
the polynomials is smaller than the order N of the available series expan-
sion for F . The singularities of the function F̃ (w) are located at the zeros
{w�} of the polynomial QK (along with w= 0 and w=±∞). The critical
exponent associated to a simple zero w� of QK is given by

λ� = K−1− QK−1(w�)

w�Q
′
K(w�)

. (A.8)

When w� is a multiple zero of QK , this formula should be modified;
details can be found in ref. 158.

In practice, we have used a modified version of the program new-
grqd.f described in ref. 158 to obtain the differential approximants. Our
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program uses Mathematica to obtain the polynomials Qj exactly (i.e.,
with exact rational coefficients), and then MPSolve(159,160) to compute the
NK zeros of QK to arbitrarily high precision (100 digits in our case). We
have computed all the differential approximants of first and second order
(i.e., K = 1,2) satisfying |Ni −Nj | � 1 and using at least 36 coefficients
of the corresponding series. For each zero w� of QK , we have computed
the corresponding critical exponents λ�. Our procedure has the advan-
tage, over the double-precision Fortran program newgrqd.f, that round-
off errors are under control. We have checked the accuracy of our results
with the help of an independent program by Y. Chan, A.J. Guttmann and
A. Rechnitzer written in C++.

Once all the approximants have been computed, we need to discard
the defective ones. We consider an approximant to be non-defective if there
is a real zero of QK sufficiently near to the expected value w0(sq)=−1/4
and this zero is sufficiently well separated from all other zeros of QK .
In practice, we asked that the zero satisfy −0.251 �w� � −0.249 for f ′′,
−0.256 �w� � −0.248 for f ′, and −0.257 �w� � −0.247 for f , and that
no other singularity should appear in the region −0.3�Rew�0, −0.05�
Imw� 0.05. This is essentially what the program tabul.f (described in
ref. 158) does.

The nondefective approximants for the square-lattice spanning-forest
free energy and its first and second derivatives are displayed in Fig. 35(a)–
(c), respectively. It is interesting to note that the estimates are not scat-
tered uniformly over the corresponding plots; rather, they tend to accumu-
late along certain curves. Unbiased estimates for w0 and λ are obtained
by averaging over the data points; crude estimates of their precision can
be obtained by defining the error bars to be one standard deviation of
the corresponding data distribution. (But we emphasize that these are not
true statistical errors as in a Monte Carlo simulation, and the error bars
should not be taken too seriously.)

As we know the exact value of w0(sq)= −1/4, we can also obtain
biased estimates of the critical exponents λ. The idea is to construct differ-
ential approximants for which w0 is an exact simple zero of the polyno-
mial QK . We have analyzed these approximants following the same criteria
as for the nonbiased ones.

Let us begin with the second derivative of the free energy, f ′′(w). The
data points in Fig. 35(c) fall over a narrow interval in both axes, and we
see no significant differences between the first- and second-order approxi-
mants. Our preferred unbiased estimates come from merging both types of
approximants:

w0 = −0.25011±0.00016, (A.9a)
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Fig. 35. (Color online) Results of studying the small-w series expansions for the square lat-
tice using the differential-approximant method. We show the estimate of the critical expo-
nent λ vs. the location of the dominant singularity w0 for (a) the spanning-forest free energy
f (w), (b) its first derivative f ′(w), and (c) its second derivative f ′′(w). The vertical dashed
line marks the theoretical prediction w0(sq) = −1/4. The results for first-order (resp. sec-
ond-order) approximants K = 1 (resp. K = 2) are denoted with red squares � (resp. black
circles ◦). In (d) we show the results for the second derivative f ′′ of the triangular-lattice free
energy. In this case the vertical dashed line marks our best estimate for w0(tri)≈−0.1753.

α = 0.933±0.030. (A.9b)

The estimate for the critical point agrees very well with the theoretical pre-
diction w0(sq)= −1/4. The estimate for the critical exponent is close to
the expected result α= 1; but it is barely compatible with it within errors
(if one takes the error bars literally). The biased estimates for α are also
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very similar for K=1 and K=2, so that once again our preferred estimate
comes from merging both data sets:

α = 0.913±0.021. (A.10)

This estimate is four standard deviations away from the expected value
α=1.

The analysis of the first derivative f ′(w) is less clear: the spread of
the data points in Figure 35(b) is much larger than it was for the sec-
ond derivative. We observe that most of the first-order approximants give
a singularity with w� ∼<−1/4, while most of the second-order ones lie at
somewhat higher values of w0 (the latter approximants also have smaller
dispersion). The estimates obtained from the K=2 approximants are

w0 = −0.25004±0.00063, (A.11a)

1−α = 0.10±0.22. (A.11b)

while those coming from merging both data sets are

w0 = −0.2506±0.0011, (A.12a)

1−α = −0.08±0.31. (A.12b)

We observe that the error bars are 4–7 times larger than for the second-
derivative series. The estimates of w0 are still compatible within errors
with the expected result w0 = −1/4. The estimates of α are compatible
with the expected value α=1, but the error bars are so large that we are
unable to tell whether the first derivative diverges or not at w=w0 (i.e.,
whether 1 −α is negative or positive). If we look at the biased estimates
of 1 − α, we see that the dispersion of the second-order approximants is
smaller than for the first-order ones. Thus, we take as our preferred esti-
mate the value coming from the K=2 approximants:

1−α = 0.104±0.040. (A.13)

This value suggests that the first derivative f ′ does not diverge at w=w0;
but this conclusion cannot be taken too seriously as the signal is only 2.5
times larger than the alleged error bar.

We conclude this analysis with the free energy [Fig. 35(a)]. The dis-
persion of the data is even larger than for the first derivative, so we should
expect even larger error bars. The K = 1 approximants yield estimates of



1276 Jacobsen et al.

w0 quite a bit below −1/4, and estimates of 2 − α that are rather near
to zero than to 1. Therefore, our preferred estimate comes from the K=2
data set:

w0 = −0.2501±0.0011, (A.14a)

2−α = 1.07±0.39. (A.14b)

The estimates are compatible with the expected values, but the error bars
are huge. The analysis of the biased estimates for 2−α is similar and our
preferred estimate comes from the K=2 approximants:

2−α = 1.063±0.095, (A.15)

which is again compatible within errors with the expected value α=1.
Let us now summarize the results of this analysis. We have found that

the the unbiased estimates of w0 are in all cases compatible within errors
with the expected value w0 =−1/4:

w0 =





−0.25011±0.00016 for f ′′,
−0.25004±0.00063 for f ′,
−0.2501±0.0011 for f .

(A.16)

This result is an independent confirmation that w0(sq)=−1/4. The unbi-
ased estimates of the critical exponent α are given by

α =





0.933±0.030 for f ′′,
0.90±0.22 for f ′,
0.93±0.39 for f ,

(A.17)

while the biased estimates are

α =





0.913±0.022 for f ′′,
0.896±0.040 for f ′,
0.937±0.095 for f .

(A.18)

The foregoing estimates are compatible among themselves within the
quoted errors. However, the estimates coming from f ′′ are at least a factor
of 2 more precise than those coming from f ′ or f . It is intriguing that all
the estimates of α are consistently smaller than the expected value α= 1.
Furthermore, the difference between the above estimates and the theoret-
ical prediction is significant, if one takes the error bars seriously. Perhaps
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this indicates a multiplicative logarithmic correction to the leading behav-
ior α=1.

The story for the triangular lattice is rather short. From Table II we
observe that the coefficients fk have a complicated sign pattern. This is
an indication that the dominant singularity (or singularities) is/are com-
plex. This fact makes the ratio method useless. Furthermore, the differ-
ential-approximant method does not give any sensible estimate of w0 (or
of the corresponding critical exponents). We computed the differential
approximants to the second derivative f ′′ (which is a priori the most favor-
able observable) using at least 20 series coefficients and with the same con-
straints on the Ni as for the square lattice. We found that the zero closest
to w0(tri)≈−0.1753 varies over a range vastly wider than for the square
lattice (by two orders of magnitude). We were therefore obliged to take
a very lenient view of what constitutes a non-defective approximant: we
considered an approximant to be nondefective if there is a real zero in
the interval −0.3 � w� � −0.1 and there is no other zero in the region
−0.5 � Rew� 0 and −0.05 � Imw� 0.05. The nondefective approximants
are displayed in Fig. 35(d). We find that, even with this lenient definition,
there are many fewer non-defective appoximants than for the square-lattice
case (45 for K=1 and 5 for K=2, compared to 91 and 164, respectively).
The non-defective approximants seem to accumulate along a curve; but the
low density of zeros prevents us from drawing any reliable conclusion from
these data.
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